22 research outputs found

    Influence of thermocouple angles and wire distance on temperature measurement

    No full text
    When a thermocouple is used to measure gas temperature, the measured temperature, i.e., the thermocouple bead temperature, is not equal to the gas temperature. The bead temperature results from the bead energy balance. The positioning angles such as the pitch angle and the roll angle and the wire distance of the thermocouple will influence the convection heat transfer of the thermocouple, causing the bead temperature variation. Two S type thermocouples are used to measure the temperature of the H2/air Hencken flame with the equivalence ratio 0.7. The maximum measurement temperature changes are 52 K and 79 K for the pitch angle variation and the roll angle variation, respectively. CFD simulations are carried out to simulate the experimental phenomena. The differences between the simulated and measured bead temperatures are less than 20.4 K. With 90° roll angle, the bead temperature increases first then decreases with the pitch angle. With 90° pitch angle, the bead temperature increases first then decreases with the roll angle. With 0° pitch angle, the bead temperature increases monotonically with the wire distance. The background physical mechanisms of the phenomena are analyzed with the detailed CFD results

    Caulerpa lentillifera Polysaccharides-Rich Extract Reduces Oxidative Stress and Proinflammatory Cytokines Levels Associated with Male Reproductive Functions in Diabetic Mice

    No full text
    Diabetes mellitus is a chronic metabolic disease that is positively correlated with reproductive dysfunction. Caulerpa lentillifera is an edible green alga with antioxidant and anti-diabetic properties. This study aims to evaluate the ameliorative effects of a polysaccharides-rich extract from C. lentillifera on the reproductive dysfunctions of diabetic male BALB/c mice induced by a high-fat diet (HFD) supplemented with intraperitoneal injections of streptozotocin (STZ). C. lentillifera was obtained from hot water and converted into a powder form (C. lentillifera extract (CLE)) by freeze drying. Mice were fed an HFD for 4 weeks before supplementing with STZ (30 mg/kg). The diabetic mice were divided into five groups, including a control group, a diabetic (DM) group, a DM with administration of a low-dose CLE treatment (DM+CLE1, 600 mg/kg), a DM with administration of a high-dose of CLE (DM+CLE2, 1000 mg/kg) and a DM with metformin treatment as a positive control (DM+Met, 200 mg/kg) for 6 weeks. The results showed that the CLE administration improved hyperglycemia and insulin resistance. Proinflammatory cytokines such as interleukin-1β and tumor necrosis factor-α were found to decrease in the CLE-treated groups. Additionally, CLE was shown to improve sperm motility and testis morphology. Based on the results, it was confirmed that the polysaccharides-rich extract from C. lentillifera extract was able to prevent diabetes-induced male reproductive dysfunction

    Silver-Nanocellulose Composite Used as SERS Substrate for Detecting Carbendazim

    No full text
    Nanocellulose is an abundant green resource that, owing to the larger surface area, length, and diameter of the fibers, can be used as a framework for loading Ag nanoparticles and serve as substrate for surface enhancement Raman scattering (SERS). These properties would cause the hydroxyl groups on the surface to adsorb the Ag ions and reduce them to Ag seed to form a load fulcrum. This paper presents a convenient and environmentally friendly method for the fabrication of silver-nanocellulose composites (NCF-Ag). A commonly used pesticide, carbendazim (CBZ), was used as a SERS probe to evaluate the properties of NCF-Ag. The results showed that NCF-Ag possesses good homogeneity, reproducibility, and stability. Additionally, CBZ was found to have a low limit of detection (LOD), i.e., 1.0 × 10−8 M, which indicates the possibility for trace analysis. Furthermore, it presents good linearity with R2 = 0.98 at 1007 and 1270 cm−1 in the range from 10−4~10−7 M CBZ

    On-Line Measurement of Dynamic Tilt Angle by Compensating Gyroscope Drift Error

    No full text

    Diazotization-Coupling Reaction-Based Determination of Tyrosine in Urine Using Ag Nanocubes by Surface-Enhanced Raman Spectroscopy

    No full text
    A novel, simple, and highly sensitive method was developed to detect the concentration of tyrosine-derived azo dye indirectly using silver nanocubes (AgNCs) as a substrate on a super-hydrophobic silver film by surface-enhanced Raman spectroscopy (SERS). Diazotization-coupling reaction occurred between diazonium ions and the phenolic tyrosine, resulting in three new typical peaks in the SERS spectrum of the azo dye that was formed on the AgNCs, indicating strong SERS activity. Subsequently, the limit of detection of this approach was as low as 10−12 M for tyrosine. Moreover, the SERS intensities of the three typical SERS signals of the analyte were linearly correlated with the logarithm of concentration of the Tyrosine. The proposed method shows great potential for tyrosine detection in the urine samples of normal humans

    Molecular Characterization of a New Tetrodotoxin-Binding Protein, Peroxiredoxin-1, from Takifugu bimaculatus

    No full text
    Pufferfish are considered a culinary delicacy but require careful preparation to avoid ingestion of the highly toxic tetrodotoxin (TTX), which accumulates in certain tissues. In this study, the tissue distribution of peroxiredoxin-1 from Takifugu bimaculatus was investigated. The peroxiredoxin-1 protein was obtained by in vitro recombinant expression and purification. The recombinant protein had a strong ability to scavenge hydroxyl radicals, protect superhelical DNA plasmids from oxidative damage, and protect L929 cells from H2O2 toxicity through in vitro antioxidant activity. In addition, we verified its ability to bind to tetrodotoxin using surface plasmon resonance techniques. Further, recombinant proteins were found to facilitate the entry of tetrodotoxin into cells. Through these analyses, we identified, for the first time, peroxiredoxin-1 protein from Takifugu bimaculatus as a potential novel tetrodotoxin-binding protein. Our findings provide a basis for further exploration of the application of peroxiredoxin-1 protein and the molecular mechanisms of tetrodotoxin enrichment in pufferfish

    Transition pattern and mechanism of B-lymphocyte precursors in regenerated mouse bone marrow after subtotal body irradiation.

    Get PDF
    Little is known about the effects of ionizing radiation on the transition and the related signal transduction of progenitor B cells in the bone marrow. Thus, using an NIH Swiss mouse model, we explored the impact of ionizing radiation on the early stage of B-cell development via an examination of the transition of CLP to pro-B to pre-B cells within bone marrow as a function of radiation doses and times. Our results showed that while the total number of bone marrow lymphoid cells at different stages were greatly reduced by subtotal body irradiation (sub-TBI), the surviving cells continued to transition from common lymphoid progenitors to pro-B and then to pre-B in a reproducible temporal pattern. The rearrangement of the immunoglobulin heavy chain increased significantly 1-2 weeks after irradiation, but no change occurred after 3-4 weeks. The rearrangement of the immunoglobulin light chain decreased significantly 1-2 weeks after sub-TBI but increased dramatically after 3-4 weeks. In addition, several key transcription factors and signaling pathways were involved in B-precursor transitions after sub-TBI. The data indicate that week 2 after irradiation is a critical time for the transition from pro-B cells to pre-B cells, reflecting that the functional processes for different B-cell stages are well preserved even after high-dose irradiation
    corecore