33 research outputs found

    Cost models for shared memory architectures

    Get PDF
    We address the gap between structured parallel programming and parallel architectures by formalizing a cost model for shared memory architectures. The cost model captures most of architectural details (processors, memory hierarchy, interconnection network, etc.) to evaluate the under-load shared memory access latency. Analytical and Numerical resolution techniques will be provided and compared. The former ones will be based on Queueing Theory. The latter ones will resort on Markov Chains constructed by means of the stochastic process algebra PEPA

    Devito: Towards a generic Finite Difference DSL using Symbolic Python

    Full text link
    Domain specific languages (DSL) have been used in a variety of fields to express complex scientific problems in a concise manner and provide automated performance optimization for a range of computational architectures. As such DSLs provide a powerful mechanism to speed up scientific Python computation that goes beyond traditional vectorization and pre-compilation approaches, while allowing domain scientists to build applications within the comforts of the Python software ecosystem. In this paper we present Devito, a new finite difference DSL that provides optimized stencil computation from high-level problem specifications based on symbolic Python expressions. We demonstrate Devito's symbolic API and performance advantages over traditional Python acceleration methods before highlighting its use in the scientific context of seismic inversion problems.Comment: pyHPC 2016 conference submissio

    Automatic Differentiation for Adjoint Stencil Loops

    Full text link
    Stencil loops are a common motif in computations including convolutional neural networks, structured-mesh solvers for partial differential equations, and image processing. Stencil loops are easy to parallelise, and their fast execution is aided by compilers, libraries, and domain-specific languages. Reverse-mode automatic differentiation, also known as algorithmic differentiation, autodiff, adjoint differentiation, or back-propagation, is sometimes used to obtain gradients of programs that contain stencil loops. Unfortunately, conventional automatic differentiation results in a memory access pattern that is not stencil-like and not easily parallelisable. In this paper we present a novel combination of automatic differentiation and loop transformations that preserves the structure and memory access pattern of stencil loops, while computing fully consistent derivatives. The generated loops can be parallelised and optimised for performance in the same way and using the same tools as the original computation. We have implemented this new technique in the Python tool PerforAD, which we release with this paper along with test cases derived from seismic imaging and computational fluid dynamics applications.Comment: ICPP 201
    corecore