6 research outputs found

    Environmental data

    No full text

    Field coral transcriptomics

    No full text
    The transcriptomic response of the coral Acropora hyacinthus to environmental change was examined. Transcriptome samples were collected once a day at 14:00 for 17 consecutive days. Three colonies were sampled in the back-reef of Ofu Island, American Samoa. During the sampling period, the environmental conditions in the back-reef changed due to shifts in the timing and magnitude of the tides. Gene co-expression network analysis was conducted on the RNASeq data

    Transcriptomic data

    No full text

    Community composition of coral-associated Symbiodiniaceae differs across fine-scale environmental gradients in Kāne‘ohe Bay

    No full text
    The survival of most reef-building corals is dependent upon a symbiosis between the coral and the community of Symbiodiniaceae. Montipora capitata, one of the main reef-building coral species in Hawai'i, is known to host a diversity of symbionts, but it remains unclear how they change spatially and whether environmental factors drive those changes. Here, we surveyed the Symbiodiniaceae community in 600 M. capitata colonies from 30 sites across Kāne'ohe Bay and tested for host specificity and environmental gradients driving spatial patterns of algal symbiont distribution. We found that the Symbiodiniaceae community differed markedly across sites, with M. capitata in the most open-ocean (northern) site hosting few or none of the genus Durusdinium, whereas individuals at other sites had a mix of Durusdinium and Cladocopium. Our study shows that the algal symbiont community composition responds to fine-scale differences in environmental gradients; depth and temperature variability were the most significant predictor of Symbiodiniaceae community, although environmental factors measured in the study explained only about 20% of observed variation. Identifying and mapping Symbiodiniaceae community distribution at multiple scales is an important step in advancing our understanding of algal symbiont diversity, distribution and evolution and the potential responses of corals to future environmental change

    Mechanisms of Thermal Tolerance in Reef-Building Corals across a Fine-Grained Environmental Mosaic: Lessons from Ofu, American Samoa

    No full text
    Environmental heterogeneity gives rise to phenotypic variation through a combination of phenotypic plasticity and fixed genetic effects. For reef-building corals, understanding the relative roles of acclimatization and adaptation in generating thermal tolerance is fundamental to predicting the response of coral populations to future climate change. The temperature mosaic in the lagoon of Ofu, American Samoa, represents an ideal natural laboratory for studying thermal tolerance in corals. Two adjacent back-reef pools approximately 500 m apart have different temperature profiles: the highly variable (HV) pool experiences temperatures that range from 24.5 to 35°C, whereas the moderately variable (MV) pool ranges from 25 to 32°C. Standardized heat stress tests have shown that corals native to the HV pool have consistently higher levels of bleaching resistance than those in the MV pool. In this review, we summarize research into the mechanisms underlying this variation in bleaching resistance, focusing on the important reef-building genus Acropora. Both acclimatization and adaptation occur strongly and define thermal tolerance differences between pools. Most individual corals shift physiology to become more heat resistant when moved into the warmer pool. Lab based tests show that these shifts begin in as little as a week and are equally sparked by exposure to periodic high temperatures as constant high temperatures. Transcriptome-wide data on gene expression show that a wide variety of genes are co-regulated in expression modules that change expression after experimental heat stress, after acclimatization, and even after short term environmental fluctuations. Population genetic scans show associations between a corals' thermal environment and its alleles at 100s to 1000s of nuclear genes and no single gene confers strong environmental effects within or between species. Symbionts also tend to differ between pools and species, and the thermal tolerance of a coral is a reflection of individual host genotype and specific symbiont types. We conclude the review by placing this work in the context of parallel research going on in other species, reefs, and ecosystems around the world and into the broader framework of reef coral resilience in the face of climate change
    corecore