518 research outputs found

    Safety analysis in large volume vacuum systems like tokamak: Experiments and numerical simulation to analyze vacuum ruptures consequences

    Get PDF
    The large volume vacuum systems are used in many industrial operations and research laboratories. Accidents in these systems should have a relevant economical and safety impact. A loss of vacuum accident (LOVA) due to a failure of the main vacuum vessel can result in a fast pressurization of the vessel and consequent mobilization dispersion of hazardous internal material through the braches. It is clear that the influence of flow fields, consequence of accidents like LOVA, on dust resuspension is a key safety issue. In order to develop this analysis an experimental facility is been developed: STARDUST. This last facility has been used to improve the knowledge about LOVA to replicate a condition more similar to appropriate operative condition like to kamaks. By the experimental data the boundary conditions have been extrapolated to give the proper input for the 2D thermofluid-dynamics numerical simulations, developed by the commercial CFD numerical code. The benchmark of numerical simulation results with the experimental ones has been used to validate and tune the 2D thermofluid-dynamics numerical model that has been developed by the authors to replicate the LOVA conditions inside STARDUST. In present work, the facility, materials, numerical model, and relevant results will be presented. © 2014 A. Malizia et al

    A new class of indicators for the model selection of scaling laws in nuclear fusion

    Full text link
    The development of computationally efficient model selection strategies represents an important problem facing the analysis of Nuclear Fusion experimental data, in particular in the field of scaling laws for the extrapolation to future machines, and image processing. In this paper, a new model selection indicator, named Model Falsification Criterion (MFC), will be presented and applied to the problem of choosing the most generalizable scaling laws for the power threshold to access the H-mode of confinement in Tokamaks. The proposed indicator is based on the properties of the model residuals, their entropy and an implementation of the data falsification principle. The model selection ability of the proposed criterion will be demonstrated in comparison with the most widely used frequentist (Akaike Information Criterion) and bayesian (Bayesian Information Criterion) indicators.Comment: 4 pages, 2 figure

    Characterisation of the L-mode Scrape Off Layer in MAST: decay lengths

    Full text link
    This work presents a detailed characterisation of the MAST Scrape Off Layer in L-mode. Scans in line averaged density, plasma current and toroidal magnetic field were performed. A comprehensive and integrated study of the SOL was allowed by the use of a wide range of diagnostics. In agreement with previous results, an increase of the line averaged density induced a broadening of the midplane density profile.Comment: 30 pages, 11 figure

    The isotope effect on divertor conditions and neutral pumping in horizontal divertor configurations in JET-ILW Ohmic plasmas

    Get PDF
    In the past at JET, with the MkI divertor, a systematic study of the influence of X-point height and poloidal flux expansion has been conducted [1,2] showing minor differences in the radiation distribution, whereas in [3] experiment and simulations have shown enhancement of detachment as the flux expansion was increased. More recently at JET, equipped with the ITER-like wall (ILW), radiative seeded scenarios have been studied and a maximum radiation fraction 75% has been achieved. EDGE2D-EIRENE [4–6] simula- tions [7,8] have already shown that the divertor heat fluxes can be reduced with N2 injection, qualita- tively consistent with experimental observations [9] , by adjusting the impurity injection rate to reproduce the measured divertor radiation. In this paper we will present edge predictive simulations on the assess- ment of effects of poloidal flux expansion and recycling on radiation distribution and X-point peaking on JET-ILW nitrogen seeded plasmas

    Recent progress in the quantitative validation of JOREK simulations of ELMs in JET

    Get PDF
    Future devices like JT-60SA, ITER and DEMO require quantitative predictions of pedestal density and temperature levels, as well as inter-ELM and ELM divertor heat fluxes, in order to improve global confinement capabilities while preventing divertor erosion/melting in the planning of future experiments. Such predictions can be obtained from dedicated pedestal models like EPED, and from non-linear MHD codes like JOREK, for which systematic validation against current experiments is necessary. In this paper, we show progress in the quantitative validation of the JOREK code using JET simulations. Results analyse the impact of diamagnetic terms on the dynamics and size of the ELMs, and evidence is provided that the onset of type-I ELMs is not governed by linear MHD stability alone, but that a nonlinear threshold could be responsible for large MHD events at the plasma edgeEURATOM 633053RCUK Energy Programme EP/I501045Plasma HEC Consortium EPSRC EP/L000237/

    Core micro-instability analysis of JET hybrid and baseline discharges with carbon wall

    Full text link
    The core micro-instability characteristics of hybrid and baseline plasmas in a selected set of JET plasmas with carbon wall are investigated through local linear and non-linear and global linear gyro-kinetic simulations with the GYRO code [J. Candy and E. Belli, General Atomics Report GA-A26818 (2011)]. In particular, we study the role of plasma pressure on the micro-instabilities, and scan the parameter space for the important plasma parameters responsible for the onset and stabilization of the modes under experimental conditions. We find that a good core confinement due to strong stabilization of the micro-turbulence driven transport can be expected in the hybrid plasmas due to the stabilizing effect of the fast ion pressure that is more effective at the low magnetic shear of the hybrid discharges. While parallel velocity gradient destabilization is important for the inner core, at outer radii the hybrid plasmas may benefit from a strong quench of the turbulence transport by E×B\mathbf{E}\times\mathbf{B} rotation shear.Comment: accepted for publication in Nuclear Fusio

    New Approximation and Calibration Methods to Provide Routine Real-Time Polarimetry on JET

    Get PDF
    corecore