40,877 research outputs found
In-plane ferromagnetism in charge-ordering
The magnetic and transport properties are systematically studied on the
single crystal with charge ordering and divergency in
resistivity below 50 K. A long-range ferromagnetic ordering is observed in
susceptibility below 20 K with the magnetic field parallel to Co-O plane, while
a negligible behavior is observed with the field perpendicular to the Co-O
plane. It definitely gives a direct evidence for the existence of in-plane
ferromagnetism below 20 K. The observed magnetoresistance (MR) of 30 % at the
field of 6 T at low temperatures indicates an unexpectedly strong spin-charge
coupling in triangle lattice systems.Comment: 4 pages, 5 figure
Integer quantum Hall effect and topological phase transitions in silicene
We numerically investigate the effects of disorder on the quantum Hall effect
(QHE) and the quantum phase transitions in silicene based on a lattice model.
It is shown that for a clean sample, silicene exhibits an unconventional QHE
near the band center, with plateaus developing at and
a conventional QHE near the band edges. In the presence of disorder, the Hall
plateaus can be destroyed through the float-up of extended levels toward the
band center, in which higher plateaus disappear first. However, the center
Hall plateau is more sensitive to disorder and disappears at a
relatively weak disorder strength. Moreover, the combination of an electric
field and the intrinsic spin-orbit interaction (SOI) can lead to quantum phase
transitions from a topological insulator to a band insulator at the charge
neutrality point (CNP), accompanied by additional quantum Hall conductivity
plateaus.Comment: 7 pages, 4 figure
Hysteresis and Anisotropic Magnetoresistance in Antiferromagnetic
The out-of-plane resistivity () and magnetoresistivity (MR) are
studied in antiferromangetic (AF) single crystals, which
have three types of noncollinear antiferromangetic spin structures. The
apparent signatures are observed in measured at the zero-field and
14 T at the spin structure transitions, giving a definite evidence for the
itinerant electrons directly coupled to the localized spins. One of striking
feature is an anisotropy of the MR with a fourfold symmetry upon rotating the
external field (B) within ab plane in the different phases, while twofold
symmetry at spin reorientation transition temperatures. The intriguing thermal
hysteresis in and magnetic hysteresis in MR are observed at spin
reorientation transition temperatures.Comment: 4 pages, 4 figure
Transmutation prospect of long-lived nuclear waste induced by high-charge electron beam from laser plasma accelerator
Photo-transmutation of long-lived nuclear waste induced by high-charge
relativistic electron beam (e-beam) from laser plasma accelerator is
demonstrated. Collimated relativistic e-beam with a high charge of
approximately 100 nC is produced from high-intensity laser interaction with
near-critical-density (NCD) plasma. Such e-beam impinges on a high-Z convertor
and then radiates energetic bremsstrahlung photons with flux approaching
10^{11} per laser shot. Taking long-lived radionuclide ^{126}Sn as an example,
the resulting transmutation reaction yield is the order of 10^{9} per laser
shot, which is two orders of magnitude higher than obtained from previous
studies. It is found that at lower densities, tightly focused laser irradiating
relatively longer NCD plasmas can effectively enhance the transmutation
efficiency. Furthermore, the photo-transmutation is generalized by considering
mixed-nuclide waste samples, which suggests that the laser-accelerated
high-charge e-beam could be an efficient tool to transmute long-lived nuclear
waste.Comment: 13 pages, 8 figures, it has been submitted to Physics of Plasm
Modeling mass transfer and reaction of dilute solutes in a ternary phase system by the lattice Boltzmann method
In this work, we propose a general approach for modeling mass transfer and reaction of dilute solute(s) in incompressible three-phase flows by introducing a collision operator in lattice Boltzmann (LB) method. An LB equation was used to simulate the solute dynamics among three different fluids, in which the newly expanded collision operator was used to depict the interface behavior of dilute solute(s). The multiscale analysis showed that the presented model can recover the macroscopic transport equations derived from the Maxwell-Stefan equation for dilute solutes in three-phase systems. Compared with the analytical equation of state of solute and dynamic behavior, these results are proven to constitute a generalized framework to simulate solute distributions in three-phase flows, including compound soluble in one phase, compound adsorbed on single-interface, compound in two phases, and solute soluble in three phases. Moreover, numerical simulations of benchmark cases, such as phase decomposition, multilayered planar interfaces, and liquid lens, were performed to test the stability and efficiency of the model. Finally, the multiphase mass transfer and reaction in Janus droplet transport in a straight microchannel were well reproduced
- …