34,770 research outputs found
Exotic mesons from quantum chromodynamics with improved gluon and quark actions on the anisotropic lattice
Hybrid (exotic) mesons, which are important predictions of quantum
chromodynamics (QCD), are states of quarks and anti-quarks bound by excited
gluons. First principle lattice study of such states would help us understand
the role of ``dynamical'' color in low energy QCD and provide valuable
information for experimental search for these new particles. In this paper, we
apply both improved gluon and quark actions to the hybrid mesons, which might
be much more efficient than the previous works in reducing lattice spacing
error and finite volume effect. Quenched simulations were done at
and on a anisotropic lattice using our PC cluster. We
obtain MeV for the mass of the hybrid meson
in the light quark sector, and Mev in the
charm quark sector; the mass splitting between the hybrid meson in the charm quark sector and the spin averaged S-wave charmonium mass
is estimated to be MeV. As a byproduct, we obtain MeV for the mass of a P-wave or
meson and MeV for the mass of a P-wave meson, which are comparable to their experimental value 1426 MeV for the
meson. The first error is statistical, and the second one is
systematical. The mixing of the hybrid meson with a four quark state is also
discussed.Comment: 12 pages, 3 figures. Published versio
Improved lattice QCD with quarks: the 2 dimensional case
QCD in two dimensions is investigated using the improved fermionic lattice
Hamiltonian proposed by Luo, Chen, Xu, and Jiang. We show that the improved
theory leads to a significant reduction of the finite lattice spacing errors.
The quark condensate and the mass of lightest quark and anti-quark bound state
in the strong coupling phase (different from t'Hooft phase) are computed. We
find agreement between our results and the analytical ones in the continuum.Comment: LaTeX file (including text + 10 figures
Bound States and Critical Behavior of the Yukawa Potential
We investigate the bound states of the Yukawa potential , using different algorithms: solving the Schr\"odinger
equation numerically and our Monte Carlo Hamiltonian approach. There is a
critical , above which no bound state exists. We study the
relation between and for various angular momentum quantum
number , and find in atomic units, , with , ,
, and .Comment: 15 pages, 12 figures, 5 tables. Version to appear in Sciences in
China
Hysteresis and Anisotropic Magnetoresistance in Antiferromagnetic
The out-of-plane resistivity () and magnetoresistivity (MR) are
studied in antiferromangetic (AF) single crystals, which
have three types of noncollinear antiferromangetic spin structures. The
apparent signatures are observed in measured at the zero-field and
14 T at the spin structure transitions, giving a definite evidence for the
itinerant electrons directly coupled to the localized spins. One of striking
feature is an anisotropy of the MR with a fourfold symmetry upon rotating the
external field (B) within ab plane in the different phases, while twofold
symmetry at spin reorientation transition temperatures. The intriguing thermal
hysteresis in and magnetic hysteresis in MR are observed at spin
reorientation transition temperatures.Comment: 4 pages, 4 figure
Infrared spectroscopy of the charge ordering transition in NaCoO
We report infrared spectra of a NaCoO single crystal which
exhibits a sharp metal-insulator transition near 50 K due to the formation of
charge ordering. In comparison with x=0.7 and 0.85 compounds, we found that the
spectral weight associated with the conducting carriers at high temperature
increases systematically with decreasing Na contents. The charge ordering
transition only affects the optical spectra below 1000 cm. A hump near
800 cm develops below 100 K, which is accompanied by the appearance of
new lattice modes as well as the strong anti-resonance feature of phonon
spectra. At lower temperature , an optical gap develops at the
magnitude of 2, evidencing an insulating charge
density wave ground state. Our experimental results and analysis unequivocally
point towards the importance of charge ordering instability and strong
electron-phonon interaction in NaCoO system.Comment: 4 pages, 3 figure
The use of chelating agents in the remediation of metal-contaminated soils : a review
2007-2008 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe
- …