33,288 research outputs found
Improved lattice QCD with quarks: the 2 dimensional case
QCD in two dimensions is investigated using the improved fermionic lattice
Hamiltonian proposed by Luo, Chen, Xu, and Jiang. We show that the improved
theory leads to a significant reduction of the finite lattice spacing errors.
The quark condensate and the mass of lightest quark and anti-quark bound state
in the strong coupling phase (different from t'Hooft phase) are computed. We
find agreement between our results and the analytical ones in the continuum.Comment: LaTeX file (including text + 10 figures
In-plane ferromagnetism in charge-ordering
The magnetic and transport properties are systematically studied on the
single crystal with charge ordering and divergency in
resistivity below 50 K. A long-range ferromagnetic ordering is observed in
susceptibility below 20 K with the magnetic field parallel to Co-O plane, while
a negligible behavior is observed with the field perpendicular to the Co-O
plane. It definitely gives a direct evidence for the existence of in-plane
ferromagnetism below 20 K. The observed magnetoresistance (MR) of 30 % at the
field of 6 T at low temperatures indicates an unexpectedly strong spin-charge
coupling in triangle lattice systems.Comment: 4 pages, 5 figure
Comment on "Time-Dependent Density-Matrix Renormalization Group: A Systematic Method for the Study of Quantum Many-Body Out-of- Equilibrium Systems"
In a recent Letter [Phys. Rev. Lett. 88, 256403(2002), cond-mat/0109158]
Cazalilla and Marston proposed a time-dependent density- matrix renormalization
group (TdDMRG) algorithm for the accurate evaluation of out-of-equilibrium
properties of quantum many-body systems. For a point contact junction between
two Luttinger liquids, a current oscillation develops after initial transient
in the insulating regime. Here we would like to point out that (a) the observed
oscillation is an artifact of the method; (b) the TdDMRG can be significantly
improved by incorporating the non-equilibrium evolution of the goundstate into
the density matrix.Comment: 1 page, 2 figure
Hysteresis and Anisotropic Magnetoresistance in Antiferromagnetic
The out-of-plane resistivity () and magnetoresistivity (MR) are
studied in antiferromangetic (AF) single crystals, which
have three types of noncollinear antiferromangetic spin structures. The
apparent signatures are observed in measured at the zero-field and
14 T at the spin structure transitions, giving a definite evidence for the
itinerant electrons directly coupled to the localized spins. One of striking
feature is an anisotropy of the MR with a fourfold symmetry upon rotating the
external field (B) within ab plane in the different phases, while twofold
symmetry at spin reorientation transition temperatures. The intriguing thermal
hysteresis in and magnetic hysteresis in MR are observed at spin
reorientation transition temperatures.Comment: 4 pages, 4 figure
Oxygen Isotope Effect on the Spin State Transition in (PrSm)CaCoO
Oxygen isotope substitution is performed in the perovskite cobalt oxide
(PrSm)CaCoO which shows a sharp spin
state transition from the intermediate spin (IS) state to the low spin (LS)
state at a certain temperature. The transition temperature of the spin state
up-shifts with the substitution of by O from the resistivity
and magnetic susceptibility measurements. The up-shift value is 6.8 K and an
oxygen isotope exponent () is about -0.8. The large oxygen isotope
effect indicates strong electron-phonon coupling in this material. The
substitution of O by O leads to a decrease in the frequency of
phonon and an increase in the effective mass of electron (), so that
the bandwidth W is decreased and the energy difference between the different
spin states is increased. This is the reason why the is shifted to high
temperature with oxygen isotopic exchange.Comment: 4 pages, 3 figure
Superconductivity and Phase Diagram in (LiFe)OHFeSeS
A series of (LiFe)OHFeSeS (0 x 1)
samples were successfully synthesized via hydrothermal reaction method and the
phase diagram is established. Magnetic susceptibility suggests that an
antiferromagnetism arising from (LiFe)OH layers coexists with
superconductivity, and the antiferromagnetic transition temperature nearly
remains constant for various S doping levels. In addition, the lattice
parameters of the both a and c axes decrease and the superconducting transition
temperature T is gradually suppressed with the substitution of S for Se,
and eventually superconductivity vanishes at = 0.90. The decrease of T
could be attributed to the effect of chemical pressure induced by the smaller
ionic size of S relative to that of Se, being consistent with the effect of
hydrostatic pressure on (LiFe)OHFeSe. But the detailed
investigation on the relationships between and the crystallographic
facts suggests a very different dependence of on anion height from
the Fe2 layer or -Fe2- angle from those in FeAs-based superconductors.Comment: 6 pages, 6 figure
Bound States and Critical Behavior of the Yukawa Potential
We investigate the bound states of the Yukawa potential , using different algorithms: solving the Schr\"odinger
equation numerically and our Monte Carlo Hamiltonian approach. There is a
critical , above which no bound state exists. We study the
relation between and for various angular momentum quantum
number , and find in atomic units, , with , ,
, and .Comment: 15 pages, 12 figures, 5 tables. Version to appear in Sciences in
China
Novel dynamical effects and glassy response in strongly correlated electronic system
We find an unconventional nucleation of low temperature paramagnetic metal
(PMM) phase with monoclinic structure from the matrix of high-temperature
antiferromagnetic insulator (AFI) phase with tetragonal structure in strongly
correlated electronic system . Such unconventional
nucleation leads to a decease in resistivity by several orders with relaxation
at a fixed temperature without external perturbation. The novel dynamical
process could arise from the competition of strain fields, Coulomb
interactions, magnetic correlations and disorders. Such competition may
frustrate the nucleation, giving rise to a slow, nonexponential relaxation and
"physical aging" behavior.Comment: 5 pages, 4 figure
- …