2,271 research outputs found

    Congestion-balanced and Welfare-enabled Charging Strategies for Electric Vehicles

    Get PDF
    With the increase of the number of electric vehicles (EVs), it is of vital importance to develop the efficient and effective charging scheduling schemes for all the EVs. In this paper, we aim to maximize the social welfare of all the EVs, charging stations (CSs) and power plant (PP), by taking into account the changing demand of each EV, the changing price, the capacity and the congestion balance between different CSs. To this end, two efficient scheduling algorithms, i.e., Centralized Charging Strategy (CCS) and Distributed Charging Strategy (DCS) are proposed. CCS has a slightly better performance than the DCS, as it takes all the information and make the decision in the central control unit. On the other hand, DCS dose not require the private information from EVs and can make decentralized decision. Extensive simulation are conducted to verify the effectiveness of the proposed algorithms, in terms of the performance, congestion balance and computing complexity

    STGC3 inhibits xenograft tumor growth of nasopharyngeal carcinoma cells by altering the expression of proteins associated with apoptosis

    Get PDF
    STGC3 is a potential tumor suppressor that inhibits the growth of the nasopharyngeal carcinoma cell line CNE2; the expression of this protein is reduced in nasopharyngeal carcinoma compared with normal nasopharyngeal tissue. In this study, we investigated the tumor-suppressing activity of STGC3 in nude mice injected subcutaneously with Tet/pTRE-STGC3/CNE2 cells. STGC3 expression was induced by the intraperitoneal injection of doxycycline (Dox). The volume mean of Tet/pTRE-STGC3/CNE2+Dox xenografts was smaller than that of Tet/pTRE/CNE2+Dox xenografts. In addition, Tet/pTRE-STGC3/CNE2+Dox xenografts showed an increase in the percentage of apoptotic cells, a decrease in Bcl-2 protein expression and an increase in Bax protein expression. A proteomic approach was used to assess the protein expression profile associated with STGC3-mediated apoptosis. Western blotting confirmed the differential up-regulation of prohibitin seen in proteomic analysis. These results indicate that overexpression of STGC3 inhibits xenograft growth in nude mice by enhancing apoptotic cell death through altered expression of apoptosis-related proteins such as Bcl-2, Bax and prohibitin. These data contribute to our understanding of the function of STGC3 in human nasopharyngeal carcinoma and provide new clues for investigating other STGC3-associated tumors

    Studies of Prototype CsI(Tl) Crystal Scintillators for Low-Energy Neutrino Experiments

    Full text link
    Crystal scintillators provide potential merits for the pursuit of low-energy low-background experiments. A CsI(Tl) scintillating crystal detector is being constructed to study low-energy neutrino physics at a nuclear reactor, while projects are underway to adopt this technique for dark matter searches. The choice of the geometrical parameters of the crystal modules, as well as the optimization of the read-out scheme, are the results of an R&D program. Crystals with 40 cm in length were developed. The detector requirements and the achieved performance of the prototypes are presented. Future prospects for this technique are discussed.Comment: 32 pages, 14 figure

    Detection and localization of citrus fruit based on improved You Only Look Once v5s and binocular vision in the orchard

    Get PDF
    Intelligent detection and localization of mature citrus fruits is a critical challenge in developing an automatic harvesting robot. Variable illumination conditions and different occlusion states are some of the essential issues that must be addressed for the accurate detection and localization of citrus in the orchard environment. In this paper, a novel method for the detection and localization of mature citrus using improved You Only Look Once (YOLO) v5s with binocular vision is proposed. First, a new loss function (polarity binary cross-entropy with logit loss) for YOLO v5s is designed to calculate the loss value of class probability and objectness score, so that a large penalty for false and missing detection is applied during the training process. Second, to recover the missing depth information caused by randomly overlapping background participants, Cr-Cb chromatic mapping, the Otsu thresholding algorithm, and morphological processing are successively used to extract the complete shape of the citrus, and the kriging method is applied to obtain the best linear unbiased estimator for the missing depth value. Finally, the citrus spatial position and posture information are obtained according to the camera imaging model and the geometric features of the citrus. The experimental results show that the recall rates of citrus detection under non-uniform illumination conditions, weak illumination, and well illumination are 99.55%, 98.47%, and 98.48%, respectively, approximately 2–9% higher than those of the original YOLO v5s network. The average error of the distance between the citrus fruit and the camera is 3.98 mm, and the average errors of the citrus diameters in the 3D direction are less than 2.75 mm. The average detection time per frame is 78.96 ms. The results indicate that our method can detect and localize citrus fruits in the complex environment of orchards with high accuracy and speed. Our dataset and codes are available at https://github.com/AshesBen/citrus-detection-localization

    Mass Transfer of Phosphorus in Silicon Melts Under Vacuum Induction Refining

    Get PDF
    An experimental investigation into the mass transfer of phosphorus in molten silicon under vacuum induction refining has been carried out. In a pilot-scale experiment, in the temperature range 1773 K (1500 A degrees C) to 1873 K (1600 A degrees C) and a vacuum of 0.1 to 0.035 Pa smelting for 7200 seconds (2 hours), phosphorus is decreased from 15 ppmw to 0.08 ppmw, which achieved the target for solar-grade silicon of less than 0.1 ppmw. Lab-scale experiments are used to determine the effects of vacuum, refining time, and temperature on the rate of mass transfer of phosphorus during vacuum refining. Hardly any phosphorus was removed when the vacuum pressure is greater than 100 Pa. Mass-transfer coefficients are nearly independent of pressure at 1783 K (1510 A degrees C) when pressures are below 0.1 Pa and are highly correlated with vacuum pressures above 0.1 Pa. A model of vacuum refining of inductively stirred silicon melts is discussed to explain the transfer path of phosphorus out of the melt.Natural Science Foundation of Fujian Province of China [2007J0012]; Key Technological Program of Fujian Province of China [2007HZ0005-2

    Human cytomegalovirus IE1 downregulates Hes1 in neural progenitor cells as a potential E3 ubiquitin ligase

    Get PDF
    This work was supported by: National Natural Science Foundation of China http://www.nsfc.gov.cn/; #81620108021: Fetal Brain Maldevelopment Caused by Sox2 Downregulation during Congenital Cytomegalovirus Infection; #31600145: The mechanism of HCMV-IE1 regulating Hes1 expression and rhythm in neural progenitor cells; #81571355: Construction of Murine Cytomegalovirus Derived viral tools for Specific Glia Tracing; #81271850: The regulation mechanism of HCMV infection on Notch signaling pathway in NPCs; and Sino-Africa Joint Research Center, Chinese Academy of Sciences http://www.sinafrica.cas.cn/; #SAJC201605: Geographical distribution and genetic variation of pathogens in Africa. This work is tightly linked to or is an important component of the above list projects, and is financially supported by all the fundings.Congenital human cytomegalovirus (HCMV) infection is the leading cause of neurological disabilities in children worldwide, but the mechanisms underlying these disorders are far from well-defined. HCMV infection has been shown to dysregulate the Notch signaling pathway in human neural progenitor cells (NPCs). As an important downstream effector of Notch signaling, the transcriptional regulator Hairy and Enhancer of Split 1 (Hes1) is essential for governing NPC fate and fetal brain development. In the present study, we report that HCMV infection downregulates Hes1 protein levels in infected NPCs. The HCMV 72-kDa immediate-early 1 protein (IE1) is involved in Hes1 degradation by assembling a ubiquitination complex and promoting Hes1 ubiquitination as a potential E3 ubiquitin ligase, followed by proteasomal degradation of Hes1. Sp100A, an important component of PML nuclear bodies, is identified to be another target of IE1-mediated ubiquitination. A C-terminal acidic region in IE1, spanning amino acids 451 to 475, is required for IE1/Hes1 physical interaction and IE1-mediated Hes1 ubiquitination, but is dispensable for IE1/Sp100A interaction and ubiquitination. Our study suggests a novel mechanism linking downregulation of Hes1 protein to neurodevelopmental disorders caused by HCMV infection. Our findings also complement the current knowledge of herpesviruses by identifying IE1 as the first potential HCMV-encoded E3 ubiquitin ligase.Publisher PDFPeer reviewe
    corecore