517 research outputs found
Considerable Enhancement of Field Emission of SnO2Nanowires by Post-Annealing Process in Oxygen at High Temperature
The field emission properties of SnO2nanowires fabricated by chemical vapor deposition with metallic catalyst-assistance were investigated. For the as-fabricated SnO2nanowires, the turn-on and threshold field were 4.03 and 5.4 V/μm, respectively. Considerable enhancement of field emission of SnO2nanowires was obtained by a post-annealing process in oxygen at high temperature. When the SnO2nanowires were post-annealed at 1,000 °C in oxygen, the turn-on and threshold field were decreased to 3.77 and 4.4 V/μm, respectively, and the current density was increased to 6.58 from 0.3 mA/cm2at the same applied electric field of 5.0 V/μm
The Dynamics of EBV Shedding Implicate a Central Role for Epithelial Cells in Amplifying Viral Output
To develop more detailed models of EBV persistence we have studied the dynamics of virus shedding in healthy carriers. We demonstrate that EBV shedding into saliva is continuous and rapid such that the virus level is replaced in ≤2 minutes, the average time that a normal individual swallows. Thus, the mouth is not a reservoir of virus but a conduit through which a continuous flow stream of virus passes in saliva. Consequently, virus is being shed at a much higher rate than previously thought, a level too high to be accounted for by replication in B cells in Waldeyer's ring alone. Virus shedding is relatively stable over short periods (hours-days) but varies through 3.5 to 5.5 logs over longer periods, a degree of variation that also cannot be accounted for solely by replication in B cells. This variation means, contrary to what is generally believed, that the definition of high and low shedder is not so much a function of variation between individuals but within individuals over time. The dynamics of shedding describe a process governing virus production that is occurring independently ≤3 times at any moment. This process grows exponentially and is then randomly terminated. We propose that these dynamics are best explained by a model where single B cells sporadically release virus that infects anywhere from 1 to 5 epithelial cells. This infection spreads at a constant exponential rate and is terminated randomly, resulting in infected plaques of epithelial cells ranging in size from 1 to 105 cells. At any one time there are a very small number (≤3) of plaques. We suggest that the final size of these plaques is a function of the rate of infectious spread within the lymphoepithelium which may be governed by the structural complexity of the tissue but is ultimately limited by the immune response
Soluble Fas ligand released by colon adenocarcinoma cells induces host lymphocyte apoptosis: an active mode of immune evasion in colon cancer
Expression of membrane-bound Fas ligand (mFasL) on colon cancer cells serves as a potential mechanism to inhibit host immune function by inducing apoptosis of host lymphocytes. Membrane-bound FasL can be cleaved and released as a soluble mediator (sFasL), which may spread the apoptosis induction effect. Our study examined whether colon adenocarcinoma cells release sFasL, and induce apoptosis of host lymphocytes without direct cell–cell contact. In 12 consecutive patients with colon adenocarcinoma mFasL was identified in the tumours, sFasL was measured in the sera and apoptosis identified in tumour-infiltrating and peripheral blood lymphocytes. To analyse the function of sFasL, colon cancer cells were primarily cultured; sFasL was isolated from supernatants, measured, incubated with Fas-bearing Jurkat cells, and the resulting apoptosis was analysed. Serum levels of sFasL were significantly elevated in all colon cancer patients with mFasL expression in tumour tissues (n = 8). In these patients, the number of apoptotic lymphocytes was significantly increased within tumour and peripheral blood. Furthermore, sFasL was present in the corresponding supernatants and induced apoptosis of Jurkat cells in a dose-dependent manner. These findings suggest that mFasL-positive colon cancer cells release sFasL, and thus may induce apoptosis of host lymphocytes as a potential mechanism for immune evasion. © 2001 Cancer Research Campaignhttp://www.bjcancer.co
Superconductivity at 44 K in K intercalated FeSe system with excess Fe
We report here that a new superconducting phase with much higher Tc has been
found in K intercalated FeSe compound with excess Fe. We successfully grew
crystals by precisely controlling the starting amount of Fe. Besides the
superconducting (SC) transition at ~30 K, we observed a sharp drop in
resistivity and a kink in susceptibility at 44 K. By combining thermodynamic
measurements with electron spin resonance (ESR), we demonstrate that this is a
new SC transition. Structural analysis unambiguously reveals two phases
coexisting in the crystals, which are responsible respectively for the SC
transitions at 30 and 44 K. The structural experiments and first-principles
calculations consistently indicate that the 44 K SC phase is close to a 122
structure, but with an unexpectedly large c-axis of 18.10 {\AA}. We further
find a novel monotonic dependence of the maximum Tc on the separation of
neighbouring FeSe layers.Comment: 15 pages, 5 figure
SnO2Nanowire Arrays and Electrical Properties Synthesized by Fast Heating a Mixture of SnO2and CNTs Waste Soot
SnO2nanowire arrays were synthesized by fast heating a mixture of SnO2and the carbon nanotubes waste soot by high-frequency induction heating. The resultant SnO2nanowires possess diameters from 50 to 100 nm and lengths up to tens of mircrometers. The field-effect transistors based on single SnO2nanowire exhibit that as-synthesized nanowires have better transistor performance in terms of transconductance and on/off ratio. This work demonstrates a simple technique to the growth of nanomaterials for application in future nanoelectronic devices
Systematical Detection of Significant Genes in Microarray Data by Incorporating Gene Interaction Relationship in Biological Systems
Many methods, including parametric, nonparametric, and Bayesian methods, have been used for detecting differentially expressed genes based on the assumption that biological systems are linear, which ignores the nonlinear characteristics of most biological systems. More importantly, those methods do not simultaneously consider means, variances, and high moments, resulting in relatively high false positive rate. To overcome the limitations, the SWang test is proposed to determine differentially expressed genes according to the equality of distributions between case and control. Our method not only latently incorporates functional relationships among genes to consider nonlinear biological system but also considers the mean, variance, skewness, and kurtosis of expression profiles simultaneously. To illustrate biological significance of high moments, we construct a nonlinear gene interaction model, demonstrating that skewness and kurtosis could contain useful information of function association among genes in microarrays. Simulations and real microarray results show that false positive rate of SWang is lower than currently popular methods (T-test, F-test, SAM, and Fold-change) with much higher statistical power. Additionally, SWang can uniquely detect significant genes in real microarray data with imperceptible differential expression but higher variety in kurtosis and skewness. Those identified genes were confirmed with previous published literature or RT-PCR experiments performed in our lab
- …