39,097 research outputs found

    Angular-dependent Magnetoresistance Oscillations in Na0.48_{0.48}CoO2_{2} Single Crystal

    Full text link
    We report measurements of the c-axis angular-dependent magnetoresistance (AMR) for a Na0.48_{0.48}CoO2_{2} single crystal, with a magnetic field of 10 T rotating within Co-O planes. Below the metal-insulator transition temperature induced by the charge ordering, the oscillation of the AMR is dominated by a two-fold rotational symmetry. The amplitudes of the oscillation corresponding to the four- and six-fold rotational symmetries are distinctive in low temperatures, but they merge into the background simultaneously at about 25 K. The six-fold oscillation originates naturally from the lattice symmetry. The observation of the four-fold rotational symmetry is consistent with the picture proposed by Choy, et al., that the Co lattice in the charge ordered state will split into two orthorhombic sublattice with one occupied by Co3+^{3+} ions and the other by Co4+^{4+} ions. We have also measured the c-axis AMR for Na0.35_{0.35}CoO2_{2} and Na0.85_{0.85}CoO2_{2} single crystals, and found no evidence for the existence of two- and four-fold symmetries.Comment: 4 pages, 6 figures. Submitted to PR

    Metamagnetic Transition in Na0.85_{0.85}CoO2_2 Single Crystals

    Full text link
    We report the magnetization, specific heat and transport measurements of high quality Na0.85_{0.85}CoO2_2 single crystals in applied magnetic fields up to 14T. In high temperatures, the system is in a paramagnetic phase. It undergoes a magnetic phase transition below about 20K. When the field is applied along the c-axis, the measurement data of magnetization, specific heat and magnetoresistance reveal a metamagnetic transition from an antiferromagnetic state to a quasi-ferromagnetic state at about 8T in low temperatures. However, no transition is observed in the magnetization measurements up to 14T when the field is applied perpendicular to the c-axis. The low temperature magnetic phase diagram of Na0.85_{0.85}CoO2_2 is determined.Comment: 4 pages, 5 figure

    Evidence for a full energy gap for nickel-pnictide LaNiAsO_{1-x}F_x superconductors by ^{75}As nuclear quadrupole resonance

    Full text link
    We report systematic ^{75}As-NQR and ^{139}La-NMR studies on nickel-pnictide superconductors LaNiAsO_{1-x}F_x (x=0, 0.06, 0.10 and 0.12). The spin lattice relaxation rate 1/T_1 decreases below T_c with a well-defined coherence peak and follows an exponential decay at low temperatures. This result indicates that the superconducting gap is fully opened, and is strikingly different from that observed in iron-pnictide analogs. In the normal state, 1/T_1T is constant in the temperature range T_c \sim 4 K < T <10 K for all compounds and up to T=250 K for x=0 and 0.06, which indicates weak electron correlations and is also different from the iron analog. We argue that the differences between the iron and nickel pnictides arise from the different electronic band structure. Our results highlight the importance of the peculiar Fermi-surface topology in iron-pnictides.Comment: 4 pages, 5 figure

    Atomic-scale compensation phenomena at polar interfaces

    Full text link
    The interfacial screening charge that arises to compensate electric fields of dielectric or ferroelectric thin films is now recognized as the most important factor in determining the capacitance or polarization of ultrathin ferroelectrics. Here we investigate using aberration-corrected electron microscopy and density functional theory how interfaces cope with the need to terminate ferroelectric polarization. In one case, we show evidence for ionic screening, which has been predicted by theory but never observed. For a ferroelectric film on an insulating substrate, we found that compensation can be mediated by interfacial charge generated, for example, by oxygen vacancies.Comment: 3 figure
    • …
    corecore