41,402 research outputs found

    Spherical geometry and integrable systems

    Full text link
    We prove that the cosine law for spherical triangles and spherical tetrahedra defines integrable systems, both in the sense of multidimensional consistency and in the sense of dynamical systems.Comment: 15 pages, 5 figure

    Scalar diagrammatic rules for Born amplitudes in QCD

    Full text link
    We show that all Born amplitudes in QCD can be calculated from scalar propagators and a set of three- and four-valent vertices. In particular, our approach includes amplitudes with any number of quark pairs. The quarks may be massless or massive. The proof of the formalism is given entirely within quantum field theory.Comment: 20 pages, references adde

    Orbital and interlayer Skyrmions crystals in bilayer graphene

    Full text link
    A graphene bilayer in a transverse magnetic field has a set of Landau levels with energies E=±N(N+1)ωcE=\pm \sqrt{N(N+1)}\hslash \omega_{c}^{\ast} where ωc\omega_{c}^{\ast} is the effective cyclotron frequency and % N=0,1,2,... All Landau levels but N=0 are four times degenerate counting spin and valley degrees of freedom. The Landau level N=0 has an extra degeneracy due to the fact that orbitals n=0n=0 and n=1n=1 both have zero kinetic energies. At integer filling factors, Coulomb interactions produce a set of broken-symmetry states with partial or full alignement in space of the valley and orbital pseudospins. These quantum Hall pseudo-ferromagnetic states support topological charged excitations in the form of orbital and valley Skyrmions. Away from integer fillings, these topological excitations can condense to form a rich variety of Skyrme crystals with interesting properties. We study in this paper different crystal phases that occur when an electric field is applied between the layers. We show that orbital Skyrmions, in analogy with spin Skyrmions, have a texture of electrical dipoles that can be controlled by an in-plane electric field. Moreover, the modulation of electronic density in the crystalline phases are experimentally accessible through a measurement of their local density of statesComment: 18 pages with 13 figure

    Bound States and Critical Behavior of the Yukawa Potential

    Full text link
    We investigate the bound states of the Yukawa potential V(r)=λexp(αr)/rV(r)=-\lambda \exp(-\alpha r)/ r, using different algorithms: solving the Schr\"odinger equation numerically and our Monte Carlo Hamiltonian approach. There is a critical α=αC\alpha=\alpha_C, above which no bound state exists. We study the relation between αC\alpha_C and λ\lambda for various angular momentum quantum number ll, and find in atomic units, αC(l)=λ[A1exp(l/B1)+A2exp(l/B2)]\alpha_{C}(l)= \lambda [A_{1} \exp(-l/ B_{1})+ A_{2} \exp(-l/ B_{2})], with A1=1.020(18)A_1=1.020(18), B1=0.443(14)B_1=0.443(14), A2=0.170(17)A_2=0.170(17), and B2=2.490(180)B_2=2.490(180).Comment: 15 pages, 12 figures, 5 tables. Version to appear in Sciences in China

    Seeding for pervasively overlapping communities

    Full text link
    In some social and biological networks, the majority of nodes belong to multiple communities. It has recently been shown that a number of the algorithms that are designed to detect overlapping communities do not perform well in such highly overlapping settings. Here, we consider one class of these algorithms, those which optimize a local fitness measure, typically by using a greedy heuristic to expand a seed into a community. We perform synthetic benchmarks which indicate that an appropriate seeding strategy becomes increasingly important as the extent of community overlap increases. We find that distinct cliques provide the best seeds. We find further support for this seeding strategy with benchmarks on a Facebook network and the yeast interactome.Comment: 8 Page

    One-Loop MHV Amplitudes in Supersymmetric Gauge Theories

    Full text link
    Using CSW rules for constructing scalar Feynman diagrams from MHV vertices, we compute the contribution of N=1\mathcal {N}=1 chiral multiplet to one-loop MHV gluon amplitude. The result agrees with the one obtained previously using unitarity-based methods, thereby demonstrating the validity of the MHV-diagram technique, in the case of one-loop MHV amplitudes, for all massless supersymmetric theories.Comment: 20 pages, 5 figure
    corecore