50,547 research outputs found
Thermodynamical quantities of lattice full QCD from an efficient method
I extend to QCD an efficient method for lattice gauge theory with dynamical
fermions. Once the eigenvalues of the Dirac operator and the density of states
of pure gluonic configurations at a set of plaquette energies (proportional to
the gauge action) are computed, thermodynamical quantities deriving from the
partition function can be obtained for arbitrary flavor number, quark masses
and wide range of coupling constants, without additional computational cost.
Results for the chiral condensate and gauge action are presented on the
lattice at flavor number , 1, 2, 3, 4 and many quark masses and coupling
constants. New results in the chiral limit for the gauge action and its
correlation with the chiral condensate, which are useful for analyzing the QCD
chiral phase structure, are also provided.Comment: Latex, 11 figures, version accepted for publicatio
Pulsed THz radiation due to phonon-polariton effect in [110] ZnTe crystal
Pulsed terahertz (THz) radiation, generated through optical rectification
(OR) by exciting [110] ZnTe crystal with ultrafast optical pulses, typically
consists of only a few cycles of electromagnetic field oscillations with a
duration about a couple of picoseconds. However, it is possible, under
appropriate conditions, to generate a long damped oscillation tail (LDOT)
following the main cycles. The LDOT can last tens of picoseconds and its
Fourier transform shows a higher and narrower frequency peak than that of the
main pulse. We have demonstrated that the generation of the LDOT depends on
both the duration of the optical pulse and its central wavelength. Furthermore,
we have also performed theoretical calculations based upon the OR effect
coupled with the phonon-polariton mode of ZnTe and obtained theoretical THz
waveforms in good agreement with our experimental observation.Comment: 9 pages, 5 figure
Deformation and spallation of shocked Cu bicrystals with Σ3 coherent and symmetric incoherent twin boundaries
We perform molecular dynamics simulations of Cu bicrystals with two important grain boundaries (GBs), Σ3 coherent twin boundaries (CTB), and symmetric incoherent twin boundaries (SITB) under planar shock wave loading. It is revealed that the shock response (deformation and spallation) of the Cu bicrystals strongly depends on the GB characteristics. At the shock compression stage, elastic shock wave can readily trigger GB plasticity at SITB but not at CTB. The SITB can induce considerable wave attenuation such as the elastic precursor decay via activating GB dislocations. For example, our simulations of a Cu multilayer structure with 53 SITBs (∼1.5-μm thick) demonstrate a ∼80% elastic shock decay. At the tension stage, spallation tends to occur at CTB but not at SITB due to the high mobility of SITB. The SITB region transforms into a threefold twin via a sequential partial dislocation slip mechanism, while CTB preserves its integrity before spallation. In addition, deformation twinning is a mechanism for inducing surface step during shock tension stage. The drastically different shock response of CTB and SITB could in principle be exploited for, or benefit, interface engineering and materials design
Ultraviolet/X-ray variability and the extended X-ray emission of the radio-loud broad absorption line quasar PG 1004+130
We present the results of recent Chandra, XMM-Newton, and Hubble Space
Telescope observations of the radio-loud (RL), broad absorption line (BAL)
quasar PG 1004+130. We compare our new observations to archival X-ray and UV
data, creating the most comprehensive, high signal-to-noise, multi-epoch,
spectral monitoring campaign of a RL BAL quasar to date. We probe for
variability of the X-ray absorption, the UV BAL, and the X-ray jet, on
month-year timescales. The X-ray absorber has a low column density of
cm when it is assumed to be fully
covering the X-ray emitting region, and its properties do not vary
significantly between the 4 observations. This suggests the observed absorption
is not related to the typical "shielding gas" commonly invoked in BAL quasar
models, but is likely due to material further from the central black hole. In
contrast, the CIV BAL shows strong variability. The equivalent width (EW) in
2014 is EW=11.240.56 \AA, showing a fractional increase of =1.160.11 from the 2003 observation, 3183 days earlier
in the rest-frame. This places PG 1004+130 among the most highly variable BAL
quasars. By combining Chandra observations we create an exposure 2.5 times
deeper than studied previously, with which to investigate the nature of the
X-ray jet and extended diffuse X-ray emission. An X-ray knot, likely with a
synchrotron origin, is detected in the radio jet ~8 arcsec (30 kpc) from the
central X-ray source with a spatial extent of ~4 arcsec (15 kpc). No similar
X-ray counterpart to the counterjet is detected. Asymmetric, non-thermal
diffuse X-ray emission, likely due to inverse Compton scattering of Cosmic
Microwave Background photons, is also detected.Comment: 15 pages, 7 figures, 3 tables. Accepted for publication in Ap
Bound States and Critical Behavior of the Yukawa Potential
We investigate the bound states of the Yukawa potential , using different algorithms: solving the Schr\"odinger
equation numerically and our Monte Carlo Hamiltonian approach. There is a
critical , above which no bound state exists. We study the
relation between and for various angular momentum quantum
number , and find in atomic units, , with , ,
, and .Comment: 15 pages, 12 figures, 5 tables. Version to appear in Sciences in
China
Theoretical modeling of spatial and temperature dependent exciton energy in coupled quantum wells
Motivated by a recent experiment of spatial and temperature dependent average
exciton energy distribution in coupled quantum wells [S. Yang \textit{et al.},
Phys. Rev. B \textbf{75}, 033311 (2007)], we investigate the nature of the
interactions in indirect excitons. Based on the uncertainty principle, along
with a temperature and energy dependent distribution which includes both
population and recombination effects, we show that the interplay between an
attractive two-body interaction and a repulsive three-body interaction can lead
to a natural and good account for the nonmonotonic temperature dependence of
the average exciton energy. Moreover, exciton energy maxima are shown to locate
at the brightest regions, in agreement with the recent experiments. Our results
provide an alternative way for understanding the underlying physics of the
exciton dynamics in coupled quantum wells.Comment: 8 pages, 5 figure
- …
