54 research outputs found

    High Efficiency and Wide Color Gamut Liquid Crystal Displays

    Get PDF
    Liquid crystal display (LCD) has become ubiquitous and indispensable in our daily life. Recently, it faces strong competition from organic light emitting diode (OLED). In order to maintain a strong leader position, LCD camp has an urgent need to enrich the color performance and reduce the power consumption. This dissertation focuses on solving these two emerging and important challenges. In the first part of the dissertation we investigate the quantum dot (QD) technology to improve the both the color gamut and the light efficiency of LCD. QD emits saturated color and grants LCD the capability to reproduce color vivid images. Moreover, the QD emission spectrum can be custom designed to match to transmission band of color filters. To fully take advantage of QD\u27s unique features, we propose a systematic modelling of the LCD backlight and optimize the QD spectrum to simultaneously maximize the color gamut and light efficiency. Moreover, QD enhanced LCD demonstrates several advantages: excellent ambient contrast, negligible color shift and controllable white point. Besides three primary LCD, We also present a spatiotemporal four-primary QD enhanced LCD. The LCD\u27s color is generated partially from time domain and partially from spatial domain. As a result, this LCD mode offers 1.5× increment in spatial resolution, 2× brightness enhancement, slightly larger color gamut and mitigated LC response requirement (~4ms). It can be employed in the commercial TV to meet the challenging Energy star 6 regulation. Besides conventional LCD, we also extend the QD applications to liquid displays and smart lighting devices. The second part of this dissertation focuses on improving the LCD light efficiency. Conventional LCD system has fairly low light efficiency (4%~7%) since polarizers and color filters absorb 50% and 67% of the incoming light respectively. We propose two approaches to reduce the light loss within polarizers and color filters. The first method is a polarization preserving backlight system. It can be combined with linearly polarized light source to boost the LCD efficiency. Moreover, this polarization preserving backlight offers high polarization efficiency (~77.8%), 2.4× on-axis luminance enhancement, and no need for extra optics films. The second approach is a LCD backlight system with simultaneous color/polarization recycling. We design a novel polarizing color filter with high transmittance ( \u3e 90%), low absorption loss (~3.3%), high extinction ratio (\u3e10,000:1) and large angular tolerance (up to ±50˚). This polarizing color filter can be used in LCD system to introduce the color/polarization recycling and accordingly boost LCD efficiency by ~3 times. These two approaches open new gateway for ultra-low power LCDs. In the final session of this dissertation, we demonstrate a low power and color vivid reflective liquid crystal on silicon (LCOS) display with low viscosity liquid crystal mixture. Compared with commercial LC material, the new LC mixture offers ~4X faster response at 20oC and ~8X faster response at -20°C. This fast response LC material enables the field-sequential-color (FSC) driving for power saving. It also leads to several attractive advantages: submillisecond response time at room temperature, vivid color even at -20oC, high brightness, excellent ambient contrast ratio, and suppressed color breakup. With this material improvement, LCOS display can be promising for the emerging wearable display market

    Light extraction analysis and enhancement in a quantum dot light emitting diode

    Get PDF
    We apply a rigorous dipole model to analyze the light outcoupling and angular performance of quantum dot light emitting diode (QLED). To illustrate the design principles, we use a red QLED as an example and compare its performance with an organic light emitting diode (OLED). By combining a high refractive index glass substrate with macroextractors, our simulation results indicate that the light outcoupling efficiency is doubled from similar to 40% to similar to 80%. After analyzing the light emission spectra and angular radiation pattern of the device, we confirm that QLED has a much weaker color shift than OLED

    Effect of refractive index mismatch on multi-photon direct laser writing

    Get PDF
    This work reports how the process of three-dimensional multi-photon direct laser writing (mpDLW) is affected when there is a small mismatch in refractive index between the material being patterned and the medium in which the focusing objective is immersed. Suspended-line microstructures were fabricated by mpDLW in the cross-linkable epoxide SU-8 as a function of focus depth and average incident power. It is found that even a small refractive index contrast of Delta n = +0.08 causes significant variation in feature width and height throughout the depth of the material. In particular, both the width and height of features can either increase or decrease with depth, depending upon how much the average incident laser power exceeds the threshold for writing. Vectorial diffraction theory is used to obtain insight into the origin of the effect and how to compensate for it. We demonstrate that varying the average focused power is a practical means for controlling the variation in feature size with focal depth

    Tuning the correlated color temperature of white LED with a guest-host liquid crystal

    Get PDF
    We demonstrate an electro-optic method to tune the correlated color temperature (CCT) of white light-emitting-diode (WLED) with a color conversion film, consisting of fluorescent dichroic dye doped in a liquid crystal host. By controlling the molecular reorientation of dichroic dyes, the power ratio of the transmitted blue and red lights of the white light can be accurately manipulated, resulting in different CCT. In a proof-of-concept experiment, we showed that the CCT of a yellow phosphor-converted WLED can be tuned from 3200 K to 4100 K. With further optimizations, the tuning range could be enlarged to 2500 K with fairly good color performance: luminous efficacy of radiation (LER) \u3e 300 lm/W, color rendering index (CRI) \u3e 75, and Duv \u3c 0.005. Besides, the operation voltage is lower than 5 V and good angular color uniformity is achieved with remote-phosphor coating. This approach is promising for next generation smart lighting

    High performance liquid crystal displays with a low dielectric constant material

    Get PDF
    We report high performance liquid crystal displays (LCDs), including fringe field switching (p-FFS) and in-plane switching (p-IPS), with a small average dielectric constant (epsilon) but positive dielectric anisotropy material. Our low e based p-FFS and p-IPS LCDs offer several attractive properties, such as high transmittance, low operation voltage, fast response time (even at -20 degrees C), which is particularly desirable for outdoor applications of mobile or wearable display devices, and suppressed flexoelectric effect. Combining these advantages with the inherent outstanding features, such as wide viewing angle, no grayscale inversion, negligible color shift, and pressure resistance, the low e LC based p-FFS and p-IPS are strong contenders for next-generation mobile displays, and high resolution and high frame rate TVs

    Visualizing alpha-synuclein and iron deposition in M83 mouse model of Parkinson's disease in vivo

    Full text link
    BACKGROUND Abnormal alpha-synuclein and iron accumulation in the brain play an important role in Parkinson's disease (PD). Herein, we aim at visualizing alpha-synuclein inclusions and iron deposition in the brains of M83 (A53T) mouse models of PD in vivo . METHODS Fluorescently labelled pyrimidoindole-derivative THK-565 was characterized by using recombinant fibrils and brains from 10-11 months old M83 mice, which subsequently underwent in vivo concurrent wide-field fluorescence and volumetric multispectral optoacoustic tomography (vMSOT) imaging. The in vivo results were verified against structural and susceptibility weighted imaging (SWI) magnetic resonance imaging (MRI) at 9.4 Tesla and scanning transmission X-ray microscopy (STXM) of perfused brains. Brain slice immunofluorescence and Prussian blue staining were further performed to validate the detection of alpha-synuclein inclusions and iron deposition in the brain, respectively. RESULTS THK-565 showed increased fluorescence upon binding to recombinant alpha-synuclein fibrils and alpha-synuclein inclusions in post-mortem brain slices from patients with Parkinson's disease and M83 mice. i.v. administration of THK-565 in M83 mice showed higher cerebral retention at 20 and 40 minutes post-injection by wide-field fluorescence compared to non-transgenic littermate mice, in congruence with the vMSOT findings. SWI/phase images and Prussian blue indicated the accumulation of iron deposits in the brains of M83 mice, presumably in the Fe 3+^{3+} form, as evinced by the STXM results. CONCLUSION We demonstrated in vivo mapping of alpha-synuclein by means of non-invasive epifluorescence and vMSOT imaging assisted with a targeted THK-565 label and SWI/STXM identification of iron deposits in M83 mouse brains ex vivo

    Visualizing alpha-synuclein and iron deposition in M83 mouse model of Parkinson’s disease in vivo

    Get PDF
    Abstract: Abnormal alpha-synuclein (αSyn) and iron accumulation in the brain play an important role in Parkinson's disease (PD). Herein, we aim to visualize αSyn inclusions and iron deposition in the brains of M83 (A53T) mouse models of PD in vivo. The fluorescent pyrimidoindole derivative THK-565 probe was characterized by means of recombinant fibrils and brains from 10- to 11-month-old M83 mice. Concurrent wide-field fluorescence and volumetric multispectral optoacoustic tomography (vMSOT) imaging were subsequently performed in vivo. Structural and susceptibility weighted imaging (SWI) magnetic resonance imaging (MRI) at 9.4 T as well as scanning transmission x-ray microscopy (STXM) were performed to characterize the iron deposits in the perfused brains. Immunofluorescence and Prussian blue staining were further performed on brain slices to validate the detection of αSyn inclusions and iron deposition. THK-565 showed increased fluorescence upon binding to recombinant αSyn fibrils and αSyn inclusions in post-mortem brain slices from patients with PD and M83 mice. Administration of THK-565 in M83 mice showed higher cerebral retention at 20 and 40 min post-intravenous injection by wide-field fluorescence compared to nontransgenic littermate mice, in congruence with the vMSOT findings. SWI/phase images and Prussian blue indicated the accumulation of iron deposits in the brains of M83 mice, presumably in the Fe3+ form, as evinced by the STXM results. In conclusion, we demonstrated in vivo mapping of αSyn by means of noninvasive epifluorescence and vMSOT imaging and validated the results by targeting the THK-565 label and SWI/STXM identification of iron deposits in M83 mouse brains ex vivo

    Oled Versus Lcd: Who Wins?

    No full text

    A Spatiotemporal Four-Primary Color Lcd With Quantum Dots

    No full text
    A four-primary liquid crystal display (LCD) by hybrid color processing in spatial and temporal domains is presented. By integrating with quantum dots, the number of LED can be reduced and the emission spectrum optimized. This approach exhibits following advantages over conventional three-primary LCDs: 1) it has 1.5X higher spatial resolution and 2X higher light efficiency; 2) it can achieve 130% color gamut in CIE 1931 and 155% in CIE 1976 color space; and 3) it has a more relaxed LC response time requirement and can be readily integrated into commercial LCD products. © 2005-2012 IEEE
    corecore