453 research outputs found

    Visualization of highly graded oxygen vacancy profiles in lead-zirconate-titanate by spectrally resolved cathodoluminescence spectroscopy

    No full text
    The ultraviolet and visible cathodoluminescence (CL) emitted at room temperature from bulk hard lead-zirconate-titanate polycrystalline perovskite has been systematically collected before and after an annealing cycle conducted in a reducing atmosphere. Spectroscopic assessments have been made of the in-depth stoichiometric profile developed upon annealing from the sample surface toward the subsurface. Trapping of electronic charge and local atomic scale distortions in the perovskite oxygen octahedron influences the variation observed in visible CL emission, while lattice distortions upon annealing directly arise from the formation of oxygen vacancies

    Evolutionary conservation of microRNA regulatory programs in plant flower development

    Get PDF
    AbstractMicroRNAs (miRNAs) are post-transcriptional regulators of growth and development in both plants and animals. Flowering is critical for the reproduction of angiosperms. Flower development entails the transition from vegetative growth to reproductive growth, floral organ initiation, and the development of floral organs. These developmental processes are genetically regulated by miRNAs, which participate in complex genetic networks of flower development. A survey of the literature shows that miRNAs, their specific targets, and the regulatory programs in which they participate are conserved throughout the plant kingdom. This review summarizes the role of miRNAs and their targets in the regulation of gene expression during the floral developmental phase, which includes the floral transition stage, followed by floral patterning, and then the development of floral organs. The conservation patterns observed in each component of the miRNA regulatory system suggest that these miRNAs play important roles in the evolution of flower development

    Novel thick-foam ferroelectret with engineered voids for energy harvesting applications

    No full text
    This work reports a novel thick-foam ferroelectret which is designed and engineered for energy harvesting applications. We fabricated this ferroelectret foam by mixing a chemical blowing agent with a polymer solution, then used heat treatment to activate the agent and create voids in the polymer foam. The dimensions of the foam, the density and size of voids can be well controlled in the fabrication process. Therefore, this ferroelectret can be engineered into optimized structure for energy harvesting applications.<br/

    A physics-based modelling and control of greenhouse system air temperature aided by IoT technology

    Get PDF
    The need to reduce energy consumption in greenhouse production has grown. Thermal heating demand alone accounts for 80% of conventional greenhouse energy consumption; this significantly reduces production profit. Since microclimate affects crop metabolic processes and output, it is essential to monitor and control it to achieve both quantity and quality production with minimum energy consumption for maximum profit. The Internet of Things (IoT) is an evolving technology for monitoring and controlling environments that have recently been adopted to boost greenhouse efficiency in many applications by integrating hardware and software solutions; therefore, its adoption is thus critical in enabling greenhouse energy consumption minimisation. The first objective of this study is to improve and validate a greenhouse dynamic air temperature model required to simulate or predict indoor temperature. To achieve the first objective, therefore, an existing model was enhanced and a closed loop test experimental data from the IoT cloud-based control system platform deployed in the prototype greenhouse built in Cranfield University was used to validate the model using an optimisation-based model fitting approach. The second goal is to control the greenhouse air temperature in simulation using relatively simple PI and on-off control strategies to maintain the grower’s desired setpoint irrespective of the inevitable disturbances and to verify the potential of the controllers in minimising the total energy input to the greenhouse. For the second objective, the simulation results showed that the two controllers maintained the desired setpoint; however, the on-off strategy retained a sustainable oscillation, and the tuned PI effectively maintained the desired temperature, although the average energy used by the controllers is the same

    Expression and clinical significance of multidrug resistance proteins in brain tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To investigate the mechanisms of multidrug resistance of brain tumors, to identify the site of cellular expression of P-gp in human brains in situ and to morphologically determine whether an association may exist between P-gp and caveolin-1.</p> <p>Methods</p> <p>Immunohistochemistry was used to detect the expression and location of P-glycoprotein (P-gp), Multidrug resistance-associated protein (MDR), Lung resistance-related protein (LRP), Topoisomerase II (Topo II) and Glutathione-S-π (GST-π) in 30 patient tumor tissues and 5 normal brain tissues. The sections were subjected to double labeling for P-gp (TRITC labeled) and caveolin-1 (FITC labeled). The location and characteristics of expression of the two proteins in the blood brain barrier(BBB) was observed using a laser scanning microscope.</p> <p>Results</p> <p>High expression of P-gp was detected in vessel walls and the tissue surrounding the vessels. However, expression of P-gp was low in tumor cells. The expression of the other 4 multidrug resistance proteins was not observed in the vessel walls. Laser scanning microscopy showed P-gp and caveolin-1 co-expression: the two proteins co-localized either in the luminal endothelial compartment or at the border of the luminal/abluminal compartments.</p> <p>Conclusion</p> <p>Chemotherapeutics drugs are interrupted in the end-feet of neuroepithelial cells of the BBB by P-gp, which weakens the chemotherapeutic effect. P-gp marks the BBB, and the transporter is localized in the luminal endothelial compartment where it co-localizes with caveolin-1.</p

    Effects of temperature on aging degradation of soft and hard lead zirconate titanate ceramics

    Get PDF
    This paper aims to study the effects of heat treatment temperatures on the aging degradation of piezoelectric properties, i.e. piezoelectric coefficient (d33) and planar electromechanical coupling factor (kp), in soft and hard PZT ceramics. Aging degradations of d33 and kp of the samples were measured for 192 h prior to heat treatments. The samples were then treated at various temperatures equivalent to 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8 times of the materials' Curie temperatures. Aging degradations of d33 and kp of the heat-treated samples were observed continuously for 1128 h. The piezoelectric properties of the un-treated samples gradually decreased with aging time. Attenuation of d33 and kp in the samples immediately after heat treatment increased with increasing heat treatment temperature. Moreover, aging degradation rate and relaxation time of the samples measured after heat treatments increased with increasing heat treatment temperature. Comparing to hard PZT ceramics, soft PZT demonstrated greater change of d33 and kp immediately after heat treatments. Soft PZT also showed greater aging rate and aging time than those of hard PZT. From the overall results, it can be concluded that both material type and heat treatment temperature have effects on aging behaviors of PZT materials. Aging degradation was more pronounced in soft PZT and the samples treated at high temperatures. The observed aging behaviors of PZT materials were explained by the interaction between domains and defects of oxygen vacancies that leads to volume, domain and grain boundary effects
    • 

    corecore