354 research outputs found

    The effect of Cr impurity to superconductivity in electron-doped BaFe2-xNixAs2

    Full text link
    We use transport and magnetization measurements to study the effect of Cr-doping to the phase diagram of the electron-doped superconducting BaFe2-xNixAs2 iron pnictides. In principle, adding Cr to electron-doped BaFe2-xNixAs2 should be equivalent to the effect of hole-doping. However, we find that Cr doping suppresses superconductivity via impurity effect, while not affecting the normal state resistivity above 100 K. We establish the phase diagram of Cr-doped BaFe2-x-yNixCryAs2 iron pnictides, and demonstrate that Cr-doping near optimal superconductivity restore the long-range antiferromagnetic order suppressed by superconductivity.Comment: 10 pages, 5 figure

    Generalized Completed Local Binary Patterns for Time-Efficient Steel Surface Defect Classification

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted ncomponent of this work in other works.Efficient defect classification is one of the most important preconditions to achieve online quality inspection for hot-rolled strip steels. It is extremely challenging owing to various defect appearances, large intraclass variation, ambiguous interclass distance, and unstable gray values. In this paper, a generalized completed local binary patterns (GCLBP) framework is proposed. Two variants of improved completed local binary patterns (ICLBP) and improved completed noise-invariant local-structure patterns (ICNLP) under the GCLBP framework are developed for steel surface defect classification. Different from conventional local binary patterns variants, descriptive information hidden in nonuniform patterns is innovatively excavated for the better defect representation. This paper focuses on the following aspects. First, a lightweight searching algorithm is established for exploiting the dominant nonuniform patterns (DNUPs). Second, a hybrid pattern code mapping mechanism is proposed to encode all the uniform patterns and DNUPs. Third, feature extraction is carried out under the GCLBP framework. Finally, histogram matching is efficiently accomplished by simple nearest-neighbor classifier. The classification accuracy and time efficiency are verified on a widely recognized texture database (Outex) and a real-world steel surface defect database [Northeastern University (NEU)]. The experimental results promise that the proposed method can be widely applied in online automatic optical inspection instruments for hot-rolled strip steel.Peer reviewe

    Clinical Assistant Diagnosis for Electronic Medical Record Based on Convolutional Neural Network

    Full text link
    Automatically extracting useful information from electronic medical records along with conducting disease diagnoses is a promising task for both clinical decision support(CDS) and neural language processing(NLP). Most of the existing systems are based on artificially constructed knowledge bases, and then auxiliary diagnosis is done by rule matching. In this study, we present a clinical intelligent decision approach based on Convolutional Neural Networks(CNN), which can automatically extract high-level semantic information of electronic medical records and then perform automatic diagnosis without artificial construction of rules or knowledge bases. We use collected 18,590 copies of the real-world clinical electronic medical records to train and test the proposed model. Experimental results show that the proposed model can achieve 98.67\% accuracy and 96.02\% recall, which strongly supports that using convolutional neural network to automatically learn high-level semantic features of electronic medical records and then conduct assist diagnosis is feasible and effective.Comment: 9 pages, 4 figures, Accepted by Scientific Report

    Longitudinal spin excitations and magnetic anisotropy in antiferromagnetically ordered BaFe2As2

    Full text link
    We report on a spin-polarized inelastic neutron scattering study of spin waves in the antiferromagnetically ordered state of BaFe2As2. Three distinct excitation components are identified, with spins fluctuating along the c-axis, perpendicular to the ordering direction in the ab-plane, and parallel to the ordering direction. While the first two "transverse" components can be described by a linear spin-wave theory with magnetic anisotropy and inter-layer coupling, the third "longitudinal" component is generically incompatible with the local moment picture. It points towards a contribution of itinerant electrons to the magnetism already in the parent compound of this family of Fe-based superconductors.Comment: 4 pages, 4 figures, plus Supplemental Materia

    Nematic crossover in BaFe2_2As2_2 under uniaxial stress

    Full text link
    Raman scattering can detect spontaneous point-group symmetry breaking without resorting to single-domain samples. Here we use this technique to study BaFe2As2\mathrm{BaFe_2As_2}, the parent compound of the "122" Fe-based superconductors. We show that an applied compression along the Fe-Fe direction, which is commonly used to produce untwinned orthorhombic samples, changes the structural phase transition at temperature TsT_{\mathrm{s}} into a crossover that spans a considerable temperature range above TsT_{\mathrm{s}}. Even in crystals that are not subject to any applied force, a distribution of substantial residual stress remains, which may explain phenomena that are seemingly indicative of symmetry breaking above TsT_{\mathrm{s}}. Our results are consistent with an onset of spontaneous nematicity only below TsT_{\mathrm{s}}.Comment: 4 pages, 4 figure
    • …
    corecore