69 research outputs found

    Driven polymer translocation through nanopores: slow versus fast dynamics

    Full text link
    We investigate the dynamics of polymer translocation through nanopores under external driving by 3D Langevin Dynamics simulations, focusing on the scaling of the average translocation time τ\tau versus the length of the polymer, τ∼Nα\tau\sim N^{\alpha}. For slow translocation, i.e., under low driving force and/or high friction, we find α≈1+ν≈1.588\alpha \approx 1+\nu \approx 1.588 where ν\nu denotes the Flory exponent. In contrast, α≈1.37\alpha\approx 1.37 is observed for fast translocation due to the highly deformed chain conformation on the trans side, reflecting a pronounced non-equilibrium situation. The dependence of the translocation time on the driving force is given by τ∼F−1\tau \sim F^{-1} and τ∼F−0.80\tau \sim F^{-0.80} for slow and fast translocation, respectively. These results clarify the controversy on the magnitude of the scaling exponent α\alpha for driven translocation.Comment: 6 pages, 7 figures, to appear in EPL (Europhysics Letters

    Sequence dependence of DNA translocation through a nanopore

    Get PDF
    We investigate the dynamics of DNA translocation through a nanopore using 2D Langevin dynamics simulations, focusing on the dependence of the translocation dynamics on the details of DNA sequences. The DNA molecules studied in this work are built from two types of bases AA and CC, which has been shown previously to have different interactions with the pore. We study DNA with repeating blocks AnCnA_nC_n for various values of nn, and find that the translocation time depends strongly on the {\em block length} 2n2n as well as on the {\em orientation} of which base entering the pore first. Thus, we demonstrate that the measurement of translocation dynamics of DNA through nanopore can yield detailed information about its structure. We have also found that the periodicity of the block sequences are contained in the periodicity of the residence time of the individual nucleotides inside the pore.Comment: 4 pages, 4 figures, minor change

    Dynamics of DNA translocation through an attractive nanopore

    Get PDF
    We investigate the dynamics of single-stranded DNA translocation through a nanopore driven by an external force using Langevin dynamics simulations in two dimensions to study how the translocation dynamics depend on the details of the DNA sequences. We consider a coarse-grained model of DNA built from two bases A and C, having different base-pore interactions, e.g., a strong (weak) attractive force between the pore and the base A (C) inside the pore. From a series of studies on hetero-DNAs with repeat units AmCn, we find that the translocation time decreases exponentially as a function of the volume fraction fC of the base C. For longer A sequences with fC⩽0.5, the translocation time strongly depends on the orientation of DNA, namely which base enters the pore first. Our studies clearly demonstrate that for a DNA of certain length N with repeat units AmCn, the pattern exhibited by the waiting times of the individual bases and their periodicity can unambiguously determine the values of m, n, and N, respectively. Therefore, a prospective experimental realization of this phenomenon may lead to fast and efficient sequence detection.Peer reviewe
    • …
    corecore