5,932 research outputs found

    Three-dimensional modelling on the hydrodynamics of a circulating fluidised bed

    No full text
    The rapid depletion of oil and the environmentalimpact of combustion has motivated the search for cleancombustion technologies. Fluidised bed combustion (FBC)technology works by suspending a fuel over a fast air inletwhilst sustaining the required temperatures. Using biomassor a mixture of coal/biomass as the fuel, FBC provides alow-carbon combustion technology whilst operating at lowtemperatures. Understanding the hydrodynamic processes influidised beds is essential as the flow behaviours causing heatdistributions and mixing determine the combustion processes.The inlet velocities and different particle sizes influence theflow behaviour significantly, particularly on the transitionfrom bubbling to fast fluidising regimes. Computationalmodelling has shown great advancement in its predictive capabilityand reliability over recent years. Whilst 3D modellingis preferred over 2D modelling, the majority of studies use2D models for multiphase models due to computational costconsideration. In this paper, two-fluid modelling (TFM) isused to model a 3D circulating fluidised bed (CFB) initiallyfocussing on fluid catalytic cracker (FCC) particles. Thetransition from bubbling to fast fluidisation over a rangeof velocities is explored, whilst the effects on the bubblediameter, particle distributions and bed expansion for differentparticle properties including particle sizes are compared. Dragmodels are also compared to study the effects of particleclustering at the meso-scale
    corecore