14 research outputs found

    Performance of desiccant enhanced evaporative cooling system based on high-low control

    Get PDF
    Desiccant enhanced evaporative cooling system is a sustainable air-conditioning (A/C) system which deals the latent load and sensible load separately by a dehumidifier and an evaporative cooler. A LDD-RIEC system consists of a liquid desiccant dehumidifier (LDD) and a regenerative indirect evaporative cooler (RIEC) were investigated. The LDD-RIEC system is characterized by low energy consumption compared with conventional mechanical cooling system, but the main shortcoming is the high dependency on ambient air conditions. To maintain stable indoor temperature, a control scheme is essential. However, very limited research work regarding control strategy can be found in open literatures. In this paper, a novel controller named high-low (H-L) control is proposed. Multi-speed technology is utilized for primary air fan and secondary air fan operating either at high speed or at low speed. The annual performance of a LDD-RIEC system is simulated in Hong Kong, a typical hot and humid region. The results indicate that H-L control is effective in maintaining stable indoor thermal comfort with temperature fluctuation from 24 °C to 27 °C for 99% of time

    Distinct MicroRNA Subcellular Size and Expression Patterns in Human Cancer Cells

    Get PDF
    Introduction. Small noncoding RNAs have important regulatory functions in different cell pathways. It is believed that most of them mainly play role in gene post-transcriptional regulation in the cytoplasm. Recent evidence suggests miRNA and siRNA activity in the nucleus. Here, we show distinct genome-wide sub-cellular localization distribution profiles of small noncoding RNAs in human breast cancer cells. Methods. We separated breast cancer cell nuclei from cytoplasm, and identified small RNA sequences using a high-throughput sequencing platform. To determine the relationship between miRNA sub-cellular distribution and cancer progression, we used microarray analysis to examine the miRNA expression levels in nucleus and cytoplasm of three human cell lines, one normal breast cell line and two breast cancer cell lines. Logistic regression and SVM were used for further analysis. Results. The sub-cellular distribution of small noncoding RNAs shows that numerous miRNAs and their isoforms (isomiR) not only locate to the cytoplasm but also appeare in the nucleus. Subsequent microarray analyses indicated that the miRNA nuclear-cytoplasmic-ratio is a significant characteristic of different cancer cell lines. Conclusions. Our results indicate that the sub-cellular distribution is important for miRNA function, and that the characterization of the small RNAs sub-cellular localizome may contribute to cancer research and diagnosis

    Performance of Desiccant Enhanced Evaporative Cooling System Based on High-Low Control

    Get PDF
    Desiccant enhanced evaporative cooling system is a sustainable air-conditioning (A/C) system which deals the latent load and sensible load separately by a dehumidifier and an evaporative cooler. A LDD-RIEC system consists of a liquid desiccant dehumidifier (LDD) and a regenerative indirect evaporative cooler (RIEC) were investigated. The LDD-RIEC system is characterized by low energy consumption compared with conventional mechanical cooling system, but the main shortcoming is the high dependency on ambient air conditions. To maintain stable indoor temperature, a control scheme is essential. However, very limited research work regarding control strategy can be found in open literatures. In this paper, a novel controller named high-low (H-L) control is proposed. Multi-speed technology is utilized for primary air fan and secondary air fan operating either at high speed or at low speed. The annual performance of a LDD-RIEC system is simulated in Hong Kong, a typical hot and humid region. The results indicate that H-L control is effective in maintaining stable indoor thermal comfort with temperature fluctuation from 24 °C to 27 °C for 99% of time

    Long Noncoding RNA ADINR Regulates Adipogenesis by Transcriptionally Activating C/EBPα

    Get PDF
    C/EBPα is a critical transcriptional regulator of adipogenesis. How C/EBPα transcription is itself regulated is poorly understood, however, and remains a key question that needs to be addressed for a complete understanding of adipogenic development. Here, we identify a lncRNA, ADINR (adipogenic differentiation induced noncoding RNA), transcribed from a position ∼450 bp upstream of the C/EBPα gene, that orchestrates C/EBPα transcription in vivo. Depletion of ADINR leads to a severe adipogenic defect that is rescued by overexpression of C/EBPα. Moreover, we reveal that ADINR RNA specifically binds to PA1 and recruits MLL3/4 histone methyl-transferase complexes so as to increase H3K4me3 and decrease H3K27me3 histone modification in the C/EBPα locus during adipogenesis. These results show that ADINR plays important roles in regulating the differentiation of human mesenchymal stem cells into adipocytes by modulating C/EBPα in cis

    Functional Characterization of Long Noncoding RNA Lnc_bc060912 in Human Lung Carcinoma Cells

    Full text link
    Long noncoding RNAs (lncRNAs) are pervasively transcribed in the human genome. Recent studies suggest that the involvement of lncRNAs in human diseases could be far more prevalent than previously appreciated. Here we have identified a lncRNA termed Lnc_bc060912 whose expression is increased in human lung and other tumors. Lnc_bc060912 is 1.2 kb in length and is composed of two exons. The expression of Lnc_bc060912 was repressed by p53. Lnc_bc060912 suppressed cell apoptosis. Using a recently developed method for RNA-pulldown with formaldehyde cross-linking, we found that Lnc_bc060912 interacted with the two DNA damage repair proteins PARP1 and NPM1. Together, these results suggest that Lnc_bc060912, via PARP1 and NPM1, affects cell apoptosis and may play important roles in tumorigenesis and cancer progression

    Residential redevelopment and entrepreneurial local state: the implications of Beijing's shifting emphasis on urban redevelopment policies

    Full text link
    The entrepreneurial nature of local government activities has significantly influenced socioeconomic and spatial changes in urban China. It is against this backdrop that property-led redevelopment projects were implemented in Beijing after 1990, guided by a programme whose very success depended on the participation of real estate capital for financial contributions. In 2000, however, a new policy was put in practice, which aimed at supplying affordable housing on government-provided land to increase the rehousing rate. This paper analyses the implications of this shifting emphasis on Beijing’s redevelopment policy and examines whether the local government has become less entrepreneurial and more socially inclusive in its redevelopment approach. Based on the case study of two redevelopment projects, the paper argues that the local state’s entrepreneurial nature has persisted and that this is largely due to its power to dispose of urban land use rights, effectively making local governments de facto landlords

    Regulation of Kv channel expression and neuronal excitability in rat medial nucleus of the trapezoid body maintained in organotypic culture

    Full text link
    Principal neurons of the medial nucleus of the trapezoid body (MNTB) express a spectrum of voltage-dependent K+ conductances mediated by Kv1–Kv4 channels, which shape action potential (AP) firing and regulate intrinsic excitability. Postsynaptic factors influencing expression of Kv channels were explored using organotypic cultures of brainstem prepared from P9–P12 rats and maintained in either low (5 mm, low-K) or high (25 mm, high-K) [K+]o medium. Whole cell patch-clamp recordings were made after 7–28 days in vitro. MNTB neurons cultured in high-K medium maintained a single AP firing phenotype, while low-K cultures had smaller K+ currents, enhanced excitability and fired multiple APs. The calyx of Held inputs degenerated within 3 days in culture, having lost their major afferent input; this preparation of calyx-free MNTB neurons allowed the effects of postsynaptic depolarisation to be studied with minimal synaptic activity. The depolarization caused by the high-K aCSF only transiently increased spontaneous AP firing (<2 min) and did not measurably increase synaptic activity. Chronic depolarization in high-K cultures raised basal levels of [Ca2+]i, increased Kv3 currents and shortened AP half-widths. These events relied on raised [Ca2+]i, mediated by influx through voltage-gated calcium channels (VGCCs) and release from intracellular stores, causing an increase in cAMP-response element binding protein (CREB) phosphorylation. Block of VGCCs or of CREB function suppressed Kv3 currents, increased AP duration, and reduced Kv3.3 and c-fos expression. Real-time PCR revealed higher Kv3.3 and Kv1.1 mRNA in high-K compared to low-K cultures, although the increased Kv1.1 mRNA was mediated by a CREB-independent mechanism. We conclude that Kv channel expression and hence the intrinsic membrane properties of MNTB neurons are homeostatically regulated by [Ca2+]i-dependent mechanisms and influenced by sustained depolarization of the resting membrane potential
    corecore