19 research outputs found

    Vulnerabilities to agricultural production shocks: An extreme, plausible scenario for assessment of risk for the insurance sector

    Get PDF
    Climate risks pose a threat to the function of the global food system and therefore also a hazard to the global financial sector, the stability of governments, and the food security and health of the world’s population. This paper presents a method to assess plausible impacts of an agricultural production shock and potential materiality for global insurers. A hypothetical, near-term, plausible, extreme scenario was developed based upon modules of historical agricultural production shocks, linked under a warm phase El Niño-Southern Oscillation (ENSO) meteorological framework. The scenario included teleconnected floods and droughts in disparate agricultural production regions around the world, as well as plausible, extreme biotic shocks. In this scenario, global crop yield declines of 10% for maize, 11% for soy, 7% for wheat and 7% for rice result in quadrupled commodity prices and commodity stock fluctuations, civil unrest, significant negative humanitarian consequences and major financial losses worldwide. This work illustrates a need for the scientific community to partner across sectors and industries towards better-integrated global data, modeling and analytical capacities, to better respond to and prepare for concurrent agricultural failure. Governments, humanitarian organizations and the private sector collectively may recognize significant benefits from more systematic assessment of exposure to agricultural climate risk

    The added value of satellite observations of methane for understanding the contemporary methane budget

    Get PDF
    Surface observations have recorded large and incompletely understood changes to atmospheric methane (CH(4)) this century. However, their ability to reveal the responsible surface sources and sinks is limited by their geographical distribution, which is biased towards the northern midlatitudes. Data from Earth-orbiting satellites designed specifically to measure atmospheric CH(4) have been available since 2009 with the launch of the Japanese Greenhouse gases Observing SATellite (GOSAT). We assess the added value of GOSAT to data collected by the US National Oceanic and Atmospheric Administration (NOAA), which have been the lynchpin for knowledge about atmospheric CH(4) since the 1980s. To achieve that we use the GEOS-Chem atmospheric chemistry transport model and an inverse method to infer a posteriori flux estimates from the NOAA and GOSAT data using common a priori emission inventories. We find the main benefit of GOSAT data is from its additional coverage over the tropics where we report large increases since the 2014/2016 El Niño, driven by biomass burning, biogenic emissions and energy production. We use data from the European TROPOspheric Monitoring Instrument to show how better spatial coverage and resolution measurements allow us to quantify previously unattainable diffuse sources of CH(4), thereby opening up a new research frontier. This article is part of a discussion meeting issue ‘Rising methane: is warming feeding warming? (part 1)’

    Large Methane Emission Fluxes Observed From Tropical Wetlands in Zambia

    Get PDF
    Methane (CH4) is a potent greenhouse gas with a warming potential 84 times that of carbon dioxide (CO2) over a 20-year period. Atmospheric CH4 concentrations have been rising since the nineteenth century but the cause of large increases post-2007 is disputed. Tropical wetlands are thought to account for ∼20% of global CH4 emissions, but African tropical wetlands are understudied and their contribution is uncertain. In this work, we use the first airborne measurements of CH4 sampled over three wetland areas in Zambia to derive emission fluxes. Three independent approaches to flux quantification from airborne measurements were used: Airborne mass balance, airborne eddy-covariance, and an atmospheric inversion. Measured emissions (ranging from 5 to 28 mg m−2 hr−1) were found to be an order of magnitude greater than those simulated by land surface models (ranging from 0.6 to 3.9 mg m−2 hr−1), suggesting much greater emissions from tropical wetlands than currently accounted for. The prevalence of such underestimated CH4 sources may necessitate additional reductions in anthropogenic greenhouse gas emissions to keep global warming below a threshold of 2°C above preindustrial levels

    Rain-fed pulses of methane from East Africa during 2018-2019 contributed to atmospheric growth rate

    Get PDF
    East Africa is a key location for wetland emissions of methane (CH4), driven by variations in rainfall that are in turn influenced by sea-surface temperature gradients over the Indian Ocean. Using satellite observations of CH4 and an atmospheric chemistry-transport model, we quantified East African CH4 emissions during 2018 and 2019 when there was 3-σ anomalous rainfall during the long rains (March-May) in 2018 and the short rains (October-December) in 2019. These rainfall anomalies resulted in CH4 emissions of 6.2 ± 0.3 Tg CH4 and 8.6 ± 0.3 Tg CH4, in each three month period, respectively, and represent a 10% and 37% increase compared to the equivalent season in the opposite year, when rainfall was close to the long-term seasonal mean. We find the additional short rains emissions were equivalent to over a quarter of the growth in global emissions in 2019, highlighting the disproportionate role of East Africa in the global CH4 budget

    Large Methane Emission Fluxes Observed from Tropical Wetlands in Zambia

    Get PDF
    Methane (CH4) is a potent greenhouse gas with a warming potential 84 times that of carbon dioxide (CO2) over a 20-year period. Atmospheric CH4 concentrations have been rising since the 19th century but the cause of large increases post-2007 are disputed. Tropical wetlands are thought to account for ∼20% of global CH4 emissions, but African tropical wetlands are understudied and their contribution is uncertain. In this work, we use the first airborne measurements of CH4 sampled over three wetland areas in Zambia to derive emission fluxes. Three independent approaches to flux quantification from airborne measurements were used: airborne mass balance, airborne eddy-covariance, and an atmospheric inversion. Measured emissions (ranging from 5–28 mg m-2 hr-1) were found to be an order of magnitude greater than those simulated by land surface models (ranging from 0.6–3.9 mg m-2 hr-1), suggesting much greater emissions from tropical wetlands than currently accounted for. The prevalence of such underestimated CH4 sources may necessitate additional reductions in anthropogenic greenhouse gas emissions to keep global warming below a threshold of 2 °C above pre-industrial levels
    corecore