528 research outputs found
On the stability and spectrum of non-supersymmetric AdS(5) solutions of M-theory compactified on Kahler-Einstein spaces
Eleven-dimensional supergravity admits non-supersymmetric solutions of the
form AdS(5)xM(6) where M(6) is a positive Kahler-Einstein space. We show that
the necessary and sufficient condition for such solutions to be stable against
linearized bosonic supergravity perturbations can be expressed as a condition
on the spectrum of the Laplacian acting on (1,1)-forms on M(6). For M(6)=CP(3),
this condition is satisfied, although there are scalars saturating the
Breitenlohner-Freedman bound. If M(6) is a product S(2)xM(4) (where M(4) is
Kahler-Einstein) then there is an instability if M(4) has a continuous
isometry. We show that a potential non-perturbative instability due to 5-brane
nucleation does not occur. The bosonic Kaluza-Klein spectrum is determined in
terms of eigenvalues of operators on M(6).Comment: 21 pages. v2: Includes SU(4) quantum numbers for CP3 case, typos
fixed, refs adde
Rigidity of SU(2,2|2)-symmetric solutions in Type IIB
We investigate the existence of half-BPS solutions in Type IIB supergravity
which are invariant under the superalgebra SU(2,2|2) realized on either AdS_5 x
S^2 x S^1 or AdS_5 x S^3 warped over a Riemann surface \Sigma with boundary. We
prove that, in both cases, the only solution is AdS_5 x S^5 itself. We argue
that this result provides evidence for the non-existence of fully back-reacted
intersecting D3/D7 branes with either AdS_5 x S^2 x S^1 x \Sigma or AdS_5 x S^3
x \Sigma near-horizon limits.Comment: 55 page
Thermal noise in half infinite mirrors with non-uniform loss: a slab of excess loss in a half infinite mirror
We calculate the thermal noise in half-infinite mirrors containing a layer of
arbitrary thickness and depth made of excessively lossy material but with the
same elastic material properties as the substrate. For the special case of a
thin lossy layer on the surface of the mirror, the excess noise scales as the
ratio of the coating loss to the substrate loss and as the ratio of the coating
thickness to the laser beam spot size. Assuming a silica substrate with a loss
function of 3x10-8 the coating loss must be less than 3x10-5 for a 6 cm spot
size and a 7 micrometers thick coating to avoid increasing the spectral density
of displacement noise by more than 10%. A similar number is obtained for
sapphire test masses.Comment: Passed LSC (internal) review. Submitted to Phys. Rev. D. (5/2001)
Replacement: Minor typo in Eq. 17 correcte
Large N Field Theory and AdS Tachyons
In non-supersymmetric orbifolds of N =4 super Yang-Mills, conformal
invariance is broken by the logarithmic running of double-trace operators -- a
leading effect at large N. A tachyonic instability in AdS_5 has been proposed
as the bulk dual of double-trace running. In this paper we make this
correspondence more precise. By standard field theory methods, we show that the
double-trace beta function is quadratic in the coupling, to all orders in
planar perturbation theory. Tuning the double-trace coupling to its (complex)
fixed point, we find conformal dimensions of the form 2 + i b, as formally
expected for operators dual to bulk scalars that violate the stability bound.
We also show that conformal invariance is broken in perturbation theory if and
only if dynamical symmetry breaking occurs. Our analysis is applicable to a
general large N field theory with vanishing single-trace beta functions.Comment: 26 pages, 6 figures. v3: small changes, version published on JHEP
Boundary entropy of supersymmetric Janus solutions
In this paper we compute the holographic boundary entropy for half-BPS Janus
deformations of the vacuum of type IIB
supergravity. Previous work \cite{Chiodaroli:2009yw} has shown that there are
two independent deformations of this sort. In one case, the six-dimensional
dilaton jumps across the interface, while the other case displays a jump of
axion and four-form potential. In case of a jump of the six-dimensional
dilaton, it is possible to compare the holographic result with the
weak-coupling result for a two-dimensional interface CFT where the radii of the
compactified bosons jump across the interface. We find exact agreement between
holographic and CFT results. This is to be contrasted with the holographic
calculation for the non-supersymmetric Janus solution, which agrees with the
CFT result only at the leading order in the jump parameter. We also examine the
implications of the holographic calculation in case of a solution with a jump
in the axion, which can be associated with a deformation of the CFT by the
-orbifold twist operator.Comment: 35 pages, pdf-LaTeX, 5 figures, v2: minor changes, typos corrected,
reference adde
Perturbative Search for Fixed Lines in Large N Gauge Theories
The logarithmic running of marginal double-trace operators is a general
feature of 4-d field theories containing scalar fields in the adjoint or
bifundamental representation. Such operators provide leading contributions in
the large N limit; therefore, the leading terms in their beta functions must
vanish for a theory to be large N conformal. We calculate the one-loop beta
functions in orbifolds of the N=4 SYM theory by a discrete subgroup Gamma of
the SU(4) R-symmetry, which are dual to string theory on AdS_5 x S^5/Gamma. We
present a general strategy for determining whether there is a fixed line
passing through the origin of the coupling constant space. Then we study in
detail some classes of non-supersymmetric orbifold theories, and emphasize the
importance of decoupling the U(1) factors. Among our examples, which include
orbifolds acting freely on the S^5, we do not find any large N
non-supersymmetric theories with fixed lines passing through the origin.
Connection of these results with closed string tachyon condensation in AdS_5 x
S^5/Gamma is discussed.Comment: 31 pages, 4 figures, latex v2: Clarifications and reference adde
General 2 charge geometries
Two charge BPS horizon free supergravity geometries are important in
proposals for understanding black hole microstates. In this paper we construct
a new class of geometries in the NS1-P system, corresponding to solitonic
strings carrying fermionic as well as bosonic condensates. Such geometries are
required to account for the full microscopic entropy of the NS1-P system. We
then briefly discuss the properties of the corresponding geometries in the dual
D1-D5 system.Comment: 44 page
Excitations in the deformed D1D5 CFT
We perform some simple computations for the first order deformation of the
D1D5 CFT off its orbifold point. It had been shown earlier that under this
deformation the vacuum state changes to a squeezed state (with the further
action of a supercharge). We now start with states containing one or two
initial quanta and write down the corresponding states obtained under the
action of deformation operator. The result is relevant to the evolution of an
initial excitation in the CFT dual to the near extremal D1D5 black hole: when a
left and a right moving excitation collide in the CFT, the deformation operator
spreads their energy over a larger number of quanta, thus evolving the state
towards the infrared.Comment: 26 pages, Latex, 4 figure
Deforming the D1D5 CFT away from the orbifold point
The D1D5 brane bound state is believed to have an `orbifold point' in its
moduli space which is the analogue of the free Yang Mills theory for the D3
brane bound state. The supergravity geometry generated by D1 and D5 branes is
described by a different point in moduli space, and in moving towards this
point we have to deform the CFT by a marginal operator: the `twist' which links
together two copies of the CFT. In this paper we find the effect of this
deformation operator on the simplest physical state of the CFT -- the Ramond
vacuum. The twist deformation leads to a final state that is populated by pairs
of excitations like those in a squeezed state. We find the coefficients
characterizing the distribution of these particle pairs (for both bosons and
fermions) and thus write this final state in closed form.Comment: 30 pages, 4 figures, Late
Spacetime in String Theory
We give a brief overview of the nature of spacetime emerging from string
theory. This is radically different from the familiar spacetime of Einstein's
relativity. At a perturbative level, the spacetime metric appears as ``coupling
constants" in a two dimensional quantum field theory. Nonperturbatively (with
certain boundary conditions), spacetime is not fundamental but must be
reconstructed from a holographic, dual theory.Comment: 20 pages; references adde
- …