234 research outputs found
Temperature dependence of D'yakonov-Perel' spin relaxation in zinc blende semiconductor quantum structures
The D'yakonov-Perel' mechanism, intimately related to the spin splitting of
the electronic states, usually dominates the spin relaxation in zinc blende
semiconductor quantum structures. Previously it has been formulated for the two
limiting cases of low and high temperatures. Here we extend the theory to give
an accurate description of the intermediate regime which is often relevant for
room temperature experiments. Employing the self-consistent multiband envelope
function approach, we determine the spin splitting of electron subbands in
n-(001) zinc blende semiconductor quantum structures. Using these results we
calculate spin relaxation rates as a function of temperature and obtain
excellent agreement with experimental data.Comment: 9 pages, 4 figure
Gate-controlled Guiding of Electrons in Graphene
Ballistic semiconductor structures have allowed the realization of
optics-like phenomena in electronics, including magnetic focusing and lensing.
An extension that appears unique to graphene is to use both n and p carrier
types to create electronic analogs of optical devices having both positive and
negative indices of refraction. Here, we use gate-controlled density with both
p and n carrier types to demonstrate the analog of the fiber-optic guiding in
graphene. Two basic effects are investigated: (1) bipolar p-n junction guiding,
based on the principle of angle-selective transmission though the graphene p-n
interface, and (2) unipolar fiber-optic guiding, using total internal
reflection controlled by carrier density. Modulation of guiding efficiency
through gating is demonstrated and compared to numerical simulations, which
indicates that interface roughness limits guiding performance, with
few-nanometer effective roughness extracted. The development of p-n and
fiber-optic guiding in graphene may lead to electrically reconfigurable wiring
in high-mobility devices.Comment: supplementary materal at
http://marcuslab.harvard.edu/papers/OG_SI.pd
Effective connectivity reveals strategy differences in an expert calculator
Mathematical reasoning is a core component of cognition and the study of experts defines the upper limits of human cognitive abilities, which is why we are fascinated by peak performers, such as chess masters and mental calculators. Here, we investigated the neural bases of calendrical skills, i.e. the ability to rapidly identify the weekday of a particular date, in a gifted mental calculator who does not fall in the autistic spectrum, using functional MRI. Graph-based mapping of effective connectivity, but not univariate analysis, revealed distinct anatomical location of “cortical hubs” supporting the processing of well-practiced close dates and less-practiced remote dates: the former engaged predominantly occipital and medial temporal areas, whereas the latter were associated mainly with prefrontal, orbitofrontal and anterior cingulate connectivity. These results point to the effect of extensive practice on the development of expertise and long term working memory, and demonstrate the role of frontal networks in supporting performance on less practiced calculations, which incur additional processing demands. Through the example of calendrical skills, our results demonstrate that the ability to perform complex calculations is initially supported by extensive attentional and strategic resources, which, as expertise develops, are gradually replaced by access to long term working memory for familiar material
Study of two G-protein coupled receptor variants of human trace amine-associated receptor 5
Here we report the study of two bioengineered variants of human trace amine-associated receptor 5 (hTAAR5) that were expressed in stable tetracycline-inducible HEK293S cell lines. A systematic detergent screen showed that fos-choline-14 was the optimal detergent to solubilize and subsequently purify the receptors. Milligram quantities of both hTAAR5 variants were purified to near homogeneity using immunoaffinity chromatography followed by gel filtration. Circular dichroism showed that the purified receptors had helical secondary structures, indicating that they were properly folded. The purified receptors are not only suitable for functional analyses, but also for subsequent crystallization trials. To our knowledge, this is the first mammalian TAAR that has been heterologously expressed and purified. Our study will likely stimulate in the development of therapeutic drug targets for TAAR-associated diseases, as well as fabrication of TAAR-based sensing devices
Polymorphism of the catechol-O-methyltransferase gene in Han Chinese patients with psoriasis vulgaris
Psoriasis vulgaris is defined by a series of linked cellular changes in the skin: hyperplasia of epidermal keratinocytes, vascular hyperplasia and ectasia, and infiltration of T lymphocytes, neutrophils and other types of leukocytes in the affected skin. Catechol-O-methyltransferase (COMT) 158 polymorphism can reduce the activity of the COMT enzyme that may trigger defective differentiation of keratinocytes in psoriasis. Immunocytes can degrade and inactivate catecholamines via monamine oxidase (MAO) and COMT in the cells. We hypothesized that the COMT-158G > A polymorphism was associated with the risk of psoriasis vulgaris in Han Chinese people. In a hospital-based case-control study, 524 patients with psoriasis vulgaris and 549 psoriasis-free controls were studied. COMT-158 G > A polymorphism was genotyped using the PCR sequence-specific primer (PCR-SSP) technique. We found no statistically significant association between the COMT-158 allele A and the risk of psoriasis vulgaris (p = 0.739 adjusted OR = 1.03; 95% CI = 0.81-1.31). This suggests that the COMT-158 G > A polymorphism may not contribute to the etiology of psoriasis vulgaris in the Han Chinese population
Superhard Phases of Simple Substances and Binary Compounds of the B-C-N-O System: from Diamond to the Latest Results (a Review)
The basic known and hypothetic one- and two-element phases of the B-C-N-O
system (both superhard phases having diamond and boron structures and
precursors to synthesize them) are described. The attention has been given to
the structure, basic mechanical properties, and methods to identify and
characterize the materials. For some phases that have been recently described
in the literature the synthesis conditions at high pressures and temperatures
are indicated.Comment: Review on superhard B-C-N-O phase
WIMP dark matter, Higgs exchange and DAMA
In the WIMP scenario, there is a one-to-one relation between the dark matter
(DM) relic density and spin independent direct detection rate if both the
annihilation of DM and its elastic scattering on nuclei go dominantly through
Higgs exchange. In particular, for DM masses much smaller than the Higgs boson
mass, the ratio of the relevant cross sections depends only on the DM mass.
Assuming DM mass and direct detection rate within the ranges allowed by the
recent DAMA collaboration results -taking account of the channelling effect on
energy threshold and the null results of the other direct detection
experiments- gives a definite range for the relic density. For scalar DM
models, like the Higgs portal models or the inert doublet model, the relic
density range turns out to be in agreement with WMAP. This scenario implies
that the Higgs boson has a large branching ratio to pairs of DM particles, a
prediction which might challenge its search at the LHC.Comment: 5 pages, 5 figures. Matches the published version. One figure
modified. Conclusions unchange
Positrons and antiprotons from inert doublet model dark matter
In the framework of the Inert Doublet Model, a very simple extension of the
Standard Model, we study the production and propagation of antimatter in cosmic
rays coming from annihilation of a scalar dark matter particle. We consider
three benchmark candidates, all consistent with the WMAP cosmic abundance and
existing direct detection experiments, and confront the predictions of the
model with the recent PAMELA, ATIC and HESS data. For a light candidate, M_{DM}
= 10 GeV, we argue that the positron and anti-proton fluxes may be large, but
still consistent with expected backgrounds, unless there is an enhancement
(boost factor) in the local density of dark matter. There is also a substantial
anti-deuteron flux which might be observable by future experiments. For a
candidate with M_{DM} = 70 GeV, the contribution to positron and anti-proton
fluxes is much smaller than the expected backgrounds. Even if a boost factor is
invoked to enhance the signals, the candidate is unable to explain the observed
positron and anti-proton excesses. Finally, for a heavy candidate, M_{DM} = 10
TeV, it is possible to fit the PAMELA excess (but, unfortunately, not the ATIC
one) provided there is a large enhancement, either in the local density of dark
matter or through the Sommerfeld effect.Comment: 17 pages ; v2: matches JCAP published versio
- …