46 research outputs found
A Patient-Derived Cell Atlas Informs Precision Targeting of Glioblastoma
Glioblastoma (GBM) is a malignant brain tumor with few therapeutic options. The disease presents with a complex spectrum of genomic aberrations, but the pharmacological consequences of these aberrations are partly unknown. Here, we report an integrated pharmacogenomic analysis of 100 patient-derived GBM cell cultures from the human glioma cell culture (HGCC) cohort. Exploring 1,544 drugs, we find that GBM has two main pharmacological subgroups, marked by differential response to proteasome inhibitors and mutually exclusive aberrations in TP53 and CDKN2A/B. We confirm this trend in cell and in xenotransplantation models, and identify both Bcl-2 family inhibitors and p53 activators as potentiators of proteasome inhibitors in GBM cells, We can further predict the responses of individual cell cultures to several existing drug classes, presenting opportunities for drug repurposing and design of stratified trials. Our functionally profiled biobank provides a valuable resource for the discovery of new treatments for GBM.Patrik Johansson, Cecilia Krona and Soumi Kundu share first authorship</p
Ecological succession of a Jurassic shallow-water ichthyosaur fall.
After the discovery of whale fall communities in modern oceans, it has been hypothesized that during the Mesozoic the carcasses of marine reptiles created similar habitats supporting long-lived and specialized animal communities. Here, we report a fully documented ichthyosaur fall community, from a Late Jurassic shelf setting, and reconstruct the ecological succession of its micro- and macrofauna. The early 'mobile-scavenger' and 'enrichment-opportunist' stages were not succeeded by a 'sulphophilic stage' characterized by chemosynthetic molluscs, but instead the bones were colonized by microbial mats that attracted echinoids and other mat-grazing invertebrates. Abundant cemented suspension feeders indicate a well-developed 'reef stage' with prolonged exposure and colonization of the bones prior to final burial, unlike in modern whale falls where organisms such as the ubiquitous bone-eating worm Osedax rapidly destroy the skeleton. Shallow-water ichthyosaur falls thus fulfilled similar ecological roles to shallow whale falls, and did not support specialized chemosynthetic communities
Active mud volcanoes on the continental slope of the Canadian Beaufort Sea
The major geochemical characteristics of Red Sea brine are summarized for 11 brine-filled deeps located along the central graben axis between 19°N and 27°N. The major element composition of the different brine pools is mainly controlled by variable mixing situations of halite-saturated solution (evaporite dissolution) with Red Sea deep water. The brine chemistry is also influenced by hydrothermal water/rock interaction, whereas magmatic and sedimentary rock reactions can be distinguished by boron, lithium, and magnesium/calcium chemistry. Moreover, hydrocarbon chemistry (concentrations and δ 13 C data) of brine indicates variable injection of light hydrocarbons from organic source rocks and strong secondary (bacterial or thermogenic) degradation processes. A simple statistical cluster analysis approach was selected to look for similarities in brine chemistry and to classify the various brine pools, as the measured chemical brine compositions show remarkably strong concentration variations for some elements. The cluster analysis indicates two main classes of brine. Type I brine chemistry (Oceanographer and Kebrit Deeps) is controlled by evaporite dissolution and contributions from sediment alteration. The Type II brine (Suakin, Port Sudan, Erba, Albatross, Discovery, Atlantis II, Nereus, Shaban, and Conrad Deeps) is influenced by variable contributions from volcanic/ magmatic rock alteration. The chemical brine classification can be correlated with the sedimentary and tectonic setting of the related depressions. Type I brine-filled deeps are located slightly off-axis from the central Red Sea graben. A typical " collapse structure formation " which has been defined for the Kebrit Deep by evaluating seismic and geomorphological data probably corresponds to our Type I brine. Type II brine located in depressions in the northern Red Sea (i.e., Conrad and Shaban Deeps) could be correlated to " volcanic intrusion-/extrusion-related " deep formation. The chemical indications for hydrothermal influence on Conrad and Shaban Deep brine can be related to brines from the multi-deeps region in the central Red Sea, where volcanic/magmatic fluid/rock interaction is most obvious. The strongest hydrothermal influence is observed in Atlantis II brine (central multi-deeps region), which is also the hottest Red Sea brine body in 2011 (*68.2 °C)
Species replacement dominates megabenthos beta diversity in a remote seamount setting
Seamounts are proposed to be hotspots of deep-sea biodiversity, a pattern potentially arising from increased productivity in a heterogeneous landscape leading to either high species co-existence or species turnover (beta diversity). However, studies on individual seamounts remain rare, hindering our understanding of the underlying causes of local changes in beta diversity. Here, we investigated processes behind beta diversity using ROV video, coupled with oceanographic and quantitative terrain parameters, over a depth gradient in Annan Seamount, Equatorial Atlantic. By applying recently developed beta diversity analyses, we identified ecologically unique sites and distinguished between two beta diversity processes: species replacement and changes in species richness. The total beta diversity was high with an index of 0.92 out of 1 and was dominated by species replacement (68%). Species replacement was affected by depth-related variables, including temperature and water mass in addition to the aspect and local elevation of the seabed. In contrast, changes in species richness component were affected only by the water mass. Water mass, along with substrate also affected differences in species abundance. This study identified, for the first time on seamount megabenthos, the different beta diversity components and drivers, which can contribute towards understanding and protecting regional deep-sea biodiversity
A Patient-Derived Cell Atlas Informs Precision Targeting of Glioblastoma
Glioblastoma (GBM) is a malignant brain tumor with few therapeutic options. The disease presents with a complex spectrum of genomic aberrations, but the pharmacological consequences of these aberrations are partly unknown. Here, we report an integrated pharmacogenomic analysis of 100 patient-derived GBM cell cultures from the human glioma cell culture (HGCC) cohort. Exploring 1,544 drugs, we find that GBM has two main pharmacological subgroups, marked by differential response to proteasome inhibitors and mutually exclusive aberrations in TP53 and CDKN2A/B. We confirm this trend in cell and in xenotransplantation models, and identify both Bcl-2 family inhibitors and p53 activators as potentiators of proteasome inhibitors in GBM cells, We can further predict the responses of individual cell cultures to several existing drug classes, presenting opportunities for drug repurposing and design of stratified trials. Our functionally profiled biobank provides a valuable resource for the discovery of new treatments for GBM
Characteristics of the Mesophotic Megabenthic Assemblages of the Vercelli Seamount (North Tyrrhenian Sea)
The biodiversity of the megabenthic assemblages of the mesophotic zone of a Tyrrhenian seamount (Vercelli Seamount) is described using Remotely Operated Vehicle (ROV) video imaging from 100 m depth to the top of the mount around 61 m depth. This pinnacle hosts a rich coralligenous community characterized by three different assemblages: (i) the top shows a dense covering of the kelp Laminaria rodriguezii; (ii) the southern side biocoenosis is mainly dominated by the octocorals Paramuricea clavata and Eunicella cavolinii; while (iii) the northern side of the seamount assemblage is colonized by active filter-feeding organisms such as sponges (sometimes covering 100% of the surface) with numerous colonies of the ascidian Diazona violacea, and the polychaete Sabella pavonina. This study highlights, also for a Mediterranean seamount, the potential role of an isolated rocky peak penetrating the euphotic zone, to work as an aggregating structure, hosting abundant benthic communities dominated by suspension feeders, whose distribution may vary in accordance to the geomorphology of the area and the different local hydrodynamic conditions
Science Priorities for Seamounts: Research Links to Conservation and Management
Seamounts shape the topography of all ocean basins and can be hotspots of biological activity in the deep sea. The Census of Marine Life on Seamounts (CenSeam) was a field program that examined seamounts as part of the global Census of Marine Life (CoML) initiative from 2005 to 2010. CenSeam progressed seamount science by collating historical data, collecting new data, undertaking regional and global analyses of seamount biodiversity, mapping species and habitat distributions, challenging established paradigms of seamount ecology, developing new hypotheses, and documenting the impacts of human activities on seamounts. However, because of the large number of seamounts globally, much about the structure, function and connectivity of seamount ecosystems remains unexplored and unknown. Continual, and potentially increasing, threats to seamount resources from fishing and seabed mining are creating a pressing demand for research to inform conservation and management strategies. To meet this need, intensive science effort in the following areas will be needed: 1) Improved physical and biological data; of particular importance is information on seamount location, physical characteristics (e.g. habitat heterogeneity and complexity), more complete and intensive biodiversity inventories, and increased understanding of seamount connectivity and faunal dispersal; 2) New human impact data; these shall encompass better studies on the effects of human activities on seamount ecosystems, as well as monitoring long-term changes in seamount assemblages following impacts (e.g. recovery); 3) Global data repositories; there is a pressing need for more comprehensive fisheries catch and effort data, especially on the high seas, and compilation or maintenance of geological and biodiversity databases that underpin regional and global analyses; 4) Application of support tools in a data-poor environment; conservation and management will have to increasingly rely on predictive modelling techniques, critical evaluation of environmental surrogates as faunal “proxies”, and ecological risk assessment
Estimating market shares for new bank locations : the applicability of the Huff model
http://deepblue.lib.umich.edu/bitstream/2027.42/35852/2/b1374539.0001.001.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/35852/1/b1374539.0001.001.tx