30 research outputs found
The ontogenetic complexity of developmental constraints
Developmental constraint is a theoretically important construct bridging ontogenetic and evolutionary studies. We propose a new operationalization of this notion that exploits the unusually rich measurement structure of landmark data. We represent landmark configurations by their partial warps, a basis for morphospace that represents a set of localized features of form. A finding of developmental constraint arises from the interplay between age-varying means and age-specific variances in these subspaces of morphospace. Examination of variances and means in 16 ventral skull landmarks in the cotton rat S. fulviventer at ages 1, 10, 20, and 30 days yielded three types of developmental constraint: canalization (constraint to relatively constant form age by age); chreods (reduction of variance orthogonal to the mean trajectory over ages); and opposition (reduction of age-specific variance along the mean trajectory over ages). While canalization and chreodic constraints have been noted previously, the oppositional type of constraint appears novel. Only one of our characters, relative length and orientation of the incisive foramen, appears to be canalized. Although skull growth becomes increasingly integrated through ontogeny, our characters display a remarkable spatiotemporal complexity in patterns of variance reduction. The specific assortment of constraints observed may be related to the precociality of Sigmodon . We suggest that Waddington's diagrammatic presentation of the “epigenetic landscape” may be misleading in quantitative studies of developmental regulation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73980/1/j.1420-9101.1993.6050621.x.pd
Ontogeny Of Integrated Skull Growth In The Cotton Rat Sigmodon Fulviventer
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137530/1/evo00626.pd
Developmental regulation of skull morphology. I. Ontogenetic dynamics of variance
In the absence of processes regulating morphogenesis and growth, phenotypic variance of a population experiencing no selective mortality should increase throughout ontogeny. To determine whether it does, we measure variance of skull shape using geometric morphometrics and examine its ontogenetic dynamics in the precocial cotton rat ( Sigmodon fulviventer ) and the altricial house mouse ( Mus musculus domesticus ). In both species, variance of shape halves between the two youngest samples measured (between 1 and 10 days postnatal and 10 and 15 days postnatal, respectively) and thereafter is nearly constant. The reduction in variance did not appear to result from a general regulation of skull size or developmental timing, although skull size may also be regulated and developmental timing is an important component of the variation in skull shape of young house mice. The ontogenetic dynamics of variance suggest two possible scenarios. First, variation generated during fetal or early postnatal growth is not immediately compensated and therefore accumulates, whereas later in growth, variation is continually generated and rapidly compensated. Second, variation generated during fetal and early postnatal growth is rapidly compensated, after which no new variance is produced. Based on a general model for bone growth, we hypothesize that variance is generated when bone grows under the direction of disorganized muscular movements and decreases with increasing neuromuscular control. Additionally, increasing coherence of signals transmitted by the growing brain and sensory organs, which exert tensile forces on bone, may also canalize skull shape.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72090/1/j.1525-142X.2004.04025.x.pd
Phylogenetic relationships in the subgenus Mus ( genus Mus, family Muridae, subfamily Murinae): examining gene trees and species trees
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75415/1/j.1095-8312.2005.00462.x.pd
A mouse Y Chromosome pseudogene is related to human ubiquitin activating enzyme E1
A 2041 bp DNA fragment isolated from the Sxr (sex reversed) region of the mouse Y Chromosome (Chr) was sequenced and characterized. The sequence, pY8/b, contains four exons that are highly similar to 525 contiguous bases from the cDNA of human ubiquitin activating enzyme El . Two of the exons contain stop codons, indicating that pY8/b is not part of a functional gene. Sequences related to pY8/b were amplified from the Y Chr of the inbred mouse strain, C57BL/6J. These sequences may be portions of the recently discovered functional equivalent of pY8/b. Despite a high degree of similarity with the human El gene, the functional equivalent of pY8/b is not the mouse El gene, because unlike El , the functional equivalent of pY8/b is expressed in a tissue-specific manner. These data are discussed with respect to theory on the evolution of the mammalian Y Chr, and in particular, to the prediction that functional genes on the Y Chr have a male-specific function.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46990/1/335_2004_Article_BF00355838.pd
Big Cat Coalitions: A Comparative Analysis of Regional Brain Volumes in Felidae
Broad-based species comparisons across mammalian orders suggest a number of factors that might influence the evolution of large brains. However, the relationship between these factors and total and regional brain size remains unclear. This study investigated the relationship between relative brain size and regional brain volumes and sociality in 13 felid species in hopes of revealing relationships that are not detected in more inclusive comparative studies. In addition, a more detailed analysis was conducted of 4 focal species: lions (Panthera leo), leopards (Panthera pardus), cougars (Puma concolor), and cheetahs (Acinonyx jubatus). These species differ markedly in sociality and behavioral flexibility, factors hypothesized to contribute to increased relative brain size and/or frontal cortex size. Lions are the only truly social species, living in prides. Although cheetahs are largely solitary, males often form small groups. Both leopards and cougars are solitary. Of the four species, leopards exhibit the most behavioral flexibility, readily adapting to changing circumstances. Regional brain volumes were analyzed using computed tomography (CT). Skulls (n=75) were scanned to create three-dimensional virtual endocasts, and regional brain volumes were measured using either sulcal or bony landmarks obtained from the endocasts or skulls. Phylogenetic least squares (PGLS) regression analyses found that sociality does not correspond with larger relative brain size in these species. However, the sociality/solitary variable significantly predicted anterior cerebrum (AC) volume, a region that includes frontal cortex. This latter finding is despite the fact that the two social species in our sample, lions and cheetahs, possess the largest and smallest relative AC volumes, respectively. Additionally, an ANOVA comparing regional brain volumes in 4 focal species revealed that lions and leopards, while not significantly different from one another, have relatively larger AC volumes than are found in cheetahs or cougars. Further, female lions possess a significantly larger AC volume than conspecific males; female lion values were also larger than those of the other three species (regardless of sex). These results may reflect greater complexity in a female lion’s social world, but additional studies are necessary. These data suggest that within family comparisons may reveal variations not easily detected by broad comparative analyses
Tests for Positive Selection on Immune and Reproductive Genes in Closely Related Species of the Murine Genus Mus
AbstractPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42372/1/30560294.pd
Length variation of CAG repeats in Sry across populations of Mus domesticus
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47019/1/335_2004_Article_BF00293015.pd
Ontogenetic relationships between cranium and mandible in coyotes and hyenas
Developing animals must resolve the conflicting demands of survival and growth, ensuring that they can function as infants or juveniles while developing toward their adult form. In the case of the mammalian skull, the cranium and mandible must maintain functional integrity to meet the feeding needs of a juvenile even as the relationship between parts must change to meet the demands imposed on adults. We examine growth and development of the cranium and mandible, using a unique ontogenetic series of known-age coyotes ( Canis latrans ), analyzing ontogenetic changes in the shapes of each part, and the relationship between them, relative to key life-history events. Both cranial and mandibular development conform to general mammalian patterns, but each also exhibits temporally and spatially localized maturational transformations, yielding a complex relationship between growth and development of each part as well as complex patterns of synchronous growth and asynchronous development between parts. One major difference between cranium and mandible is that the cranium changes dramatically in both size and shape over ontogeny, whereas the mandible undergoes only modest shape change. Cranium and mandible are synchronous in growth, reaching adult size at the same life-history stage; growth and development are synchronous for the cranium but not for the mandible. This synchrony of growth between cranium and mandible, and asynchrony of mandibular development, is also characteristic of a highly specialized carnivore, the spotted hyena ( Crocuta crocuta ), but coyotes have a much less protracted development, being handicapped relative to adults for a much shorter time. Morphological development does not predict life-history events in these two carnivores, which is contrary to what has been reported for two rodent species. The changes seen in skull shape in successive life-history stages suggest that adult functional demands cannot be satisfied by the morphology characterizing earlier life-history stages. J. Morphol. 2011. © 2011 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/84382/1/10934_ftp.pd
Evidence for Multiple Functional Copies of the Male Sex-Determining Locus, Sry, in African Murine Rodents
Southern hybridization data suggest that the male sex-determining locus, Sry, is often duplicated in rodents. Here we explore DNA sequence evolution of orthologous and paralogous copies of Sry isolated from six species of African murines. PCR amplification followed by direct sequencing revealed from two to four copies of Sry per species. All copies include a long open reading frame, with a stop codon that coincides closely with the stop codon of the house mouse, Mus musculus, a species known to have a single copy of Sry. A phylogenetic analysis suggests that there are at least seven paralogous copies of Sry in this group of rodents. Putative orthologues are identical; sequence divergence among putative paralogues ranges from 1 to 8% (excluding the CAG repeat), with much lower levels of divergence in the high-mobility group (HMG-box) region than in the C-terminal region. A high proportion of nucleotide substitutions in both regions result in amino-acid replacement. The long open reading frame, conserved HMG-box, and pattern of evolution of the putative paralogues suggest that they are functional.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42367/1/239-45-1-60_45n1p60.pd