34 research outputs found

    The NORMAN Suspect List Exchange (NORMAN-SLE): facilitating European and worldwide collaboration on suspect screening in high resolution mass spectrometry

    Get PDF
    Background: The NORMAN Association (https://www.norman-.network.com/) initiated the NORMAN Suspect List Exchange (NORMAN-SLE; https://www.norman-.network.com/nds/SLE/) in 2015, following the NORMAN collaborative trial on non-target screening of environmental water samples by mass spectrometry. Since then, this exchange of information on chemicals that are expected to occur in the environment, along with the accompanying expert knowledge and references, has become a valuable knowledge base for "suspect screening" lists. The NORMAN-SLE now serves as a FAIR (Findable, Accessible, Interoperable, Reusable) chemical information resource worldwide.Results: The NORMAN-SLE contains 99 separate suspect list collections (as of May 2022) from over 70 contributors around the world, totalling over 100,000 unique substances. The substance classes include per- and polyfluoroalkyl substances (PFAS), pharmaceuticals, pesticides, natural toxins, high production volume substances covered under the European REACH regulation (EC: 1272/2008), priority contaminants of emerging concern (CECs) and regulatory lists from NORMAN partners. Several lists focus on transformation products (TPs) and complex features detected in the environment with various levels of provenance and structural information. Each list is available for separate download. The merged, curated collection is also available as the NORMAN Substance Database (NORMAN SusDat). Both the NORMAN-SLE and NORMAN SusDat are integrated within the NORMAN Database System (NDS). The individual NORMAN-SLE lists receive digital object identifiers (DOIs) and traceable versioning via a Zenodo community (https:// zenodo.org/communities/norman-.sle), with a total of > 40,000 unique views, > 50,000 unique downloads and 40 citations (May 2022). NORMAN-SLE content is progressively integrated into large open chemical databases such as PubChem (https://pubchem.ncbi.nlm.nih.gov/) and the US EPA's CompTox Chemicals Dashboard (https://comptox. epa.gov/dashboard/), enabling further access to these lists, along with the additional functionality and calculated properties these resources offer. PubChem has also integrated significant annotation content from the NORMAN-SLE, including a classification browser (https://pubchem.ncbi.nlm.nih.gov/classification/#hid=101).Conclusions: The NORMAN-SLE offers a specialized service for hosting suspect screening lists of relevance for the environmental community in an open, FAIR manner that allows integration with other major chemical resources. These efforts foster the exchange of information between scientists and regulators, supporting the paradigm shift to the "one substance, one assessment" approach. New submissions are welcome via the contacts provided on the NORMAN-SLE website (https://www.norman-.network.com/nds/SLE/)

    Configuration mixing and relative transition rates between low-spin states in 68Ni

    Get PDF
    The low-spin level scheme of 68Ni was investigated following two-neutron-knockout and multinucleon-transfer reactions. The energy of the first excited state was determined to be Ex(02+)=1603.5(3) keV. Relative B(E2) transition probabilities were deduced and compared with shell-model calculations using several modern effective interactions. Theory reproduces the data well, but indicates substantial mixing of multi-particle, multi-hole configurations for the lowest observed 0+ and 2 + states

    Identification of deformed intruder states in semi-magic Ni 70

    Get PDF
    The structure of semi-magic 2870Ni42 was investigated following complementary multinucleon-transfer and secondary fragmentation reactions. Changes to the higher-spin, presumed negative-parity states based on observed Îł-ray coincidence relationships result in better agreement with shell-model calculations using effective interactions in the neutron f5/2pg9/2 model space. The second 2+ and (4+) states, however, can only be successfully described when proton excitations across the Z=28 shell gap are included. Monte Carlo shell-model calculations suggest that the latter two states are part of a prolate-deformed intruder sequence, establishing an instance of shape coexistence at low excitation energies similar to that observed recently in neighboring Ni68

    The NORMAN Suspect List Exchange (NORMAN-SLE): Facilitating European and worldwide collaboration on suspect screening in high resolution mass spectrometry

    Get PDF
    Background: The NORMAN Association (https://www.norman-network.com/) initiated the NORMAN Suspect List Exchange (NORMAN-SLE; https://www.norman-network.com/nds/SLE/) in 2015, following the NORMAN collaborative trial on non-target screening of environmental water samples by mass spectrometry. Since then, this exchange of information on chemicals that are expected to occur in the environment, along with the accompanying expert knowledge and references, has become a valuable knowledge base for “suspect screening” lists. The NORMAN-SLE now serves as a FAIR (Findable, Accessible, Interoperable, Reusable) chemical information resource worldwide. Results: The NORMAN-SLE contains 99 separate suspect list collections (as of May 2022) from over 70 contributors around the world, totalling over 100,000 unique substances. The substance classes include per- and polyfluoroalkyl substances (PFAS), pharmaceuticals, pesticides, natural toxins, high production volume substances covered under the European REACH regulation (EC: 1272/2008), priority contaminants of emerging concern (CECs) and regulatory lists from NORMAN partners. Several lists focus on transformation products (TPs) and complex features detected in the environment with various levels of provenance and structural information. Each list is available for separate download. The merged, curated collection is also available as the NORMAN Substance Database (NORMAN SusDat). Both the NORMAN-SLE and NORMAN SusDat are integrated within the NORMAN Database System (NDS). The individual NORMAN-SLE lists receive digital object identifiers (DOIs) and traceable versioning via a Zenodo community (https://zenodo.org/communities/norman-sle), with a total of > 40,000 unique views, > 50,000 unique downloads and 40 citations (May 2022). NORMAN-SLE content is progressively integrated into large open chemical databases such as PubChem (https://pubchem.ncbi.nlm.nih.gov/) and the US EPA’s CompTox Chemicals Dashboard (https://comptox.epa.gov/dashboard/), enabling further access to these lists, along with the additional functionality and calculated properties these resources offer. PubChem has also integrated significant annotation content from the NORMAN-SLE, including a classification browser (https://pubchem.ncbi.nlm.nih.gov/classification/#hid=101). Conclusions: The NORMAN-SLE offers a specialized service for hosting suspect screening lists of relevance for the environmental community in an open, FAIR manner that allows integration with other major chemical resources. These efforts foster the exchange of information between scientists and regulators, supporting the paradigm shift to the “one substance, one assessment” approach. New submissions are welcome via the contacts provided on the NORMAN-SLE website (https://www.norman-network.com/nds/SLE/)

    The NORMAN Suspect List Exchange (NORMAN-SLE): facilitating European and worldwide collaboration on suspect screening in high resolution mass spectrometry

    Get PDF
    The NORMAN Association (https://www.norman-network.com/) initiated the NORMAN Suspect List Exchange (NORMAN-SLE; https://www.norman-network.com/nds/SLE/) in 2015, following the NORMAN collaborative trial on non-target screening of environmental water samples by mass spectrometry. Since then, this exchange of information on chemicals that are expected to occur in the environment, along with the accompanying expert knowledge and references, has become a valuable knowledge base for "suspect screening" lists. The NORMAN-SLE now serves as a FAIR (Findable, Accessible, Interoperable, Reusable) chemical information resource worldwide.The NORMAN-SLE project has received funding from the NORMAN Association via its joint proposal of activities. HMT and ELS are supported by the Luxembourg National Research Fund (FNR) for project A18/BM/12341006. ELS, PC, SEH, HPHA, ZW acknowledge funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 101036756, project ZeroPM: Zero pollution of persistent, mobile substances. The work of EEB, TC, QL, BAS, PAT, and JZ was supported by the National Center for Biotechnology Information of the National Library of Medicine (NLM), National Institutes of Health (NIH). JOB is the recipient of an NHMRC Emerging Leadership Fellowship (EL1 2009209). KVT and JOB acknowledge the support of the Australian Research Council (DP190102476). The Queensland Alliance for Environmental Health Sciences, The University of Queensland, gratefully acknowledges the financial support of the Queensland Department of Health. NR is supported by a Miguel Servet contract (CP19/00060) from the Instituto de Salud Carlos III, co-financed by the European Union through Fondo Europeo de Desarrollo Regional (FEDER). MM and TR gratefully acknowledge financial support by the German Ministry for Education and Research (BMBF, Bonn) through the project “Persistente mobile organische Chemikalien in der aquatischen Umwelt (PROTECT)” (FKz: 02WRS1495 A/B/E). LiB acknowledges funding through a Research Foundation Flanders (FWO) fellowship (11G1821N). JAP and JMcL acknowledge financial support from the NIH for CCSCompendium (S50 CCSCOMPEND) via grants NIH NIGMS R01GM092218 and NIH NCI 1R03CA222452-01, as well as the Vanderbilt Chemical Biology Interface training program (5T32GM065086-16), plus use of resources of the Center for Innovative Technology (CIT) at Vanderbilt University. TJ was (partly) supported by the Dutch Research Council (NWO), project number 15747. UFZ (TS, MaK, WB) received funding from SOLUTIONS project (European Union’s Seventh Framework Programme for research, technological development and demonstration under Grant Agreement No. 603437). TS, MaK, WB, JPA, RCHV, JJV, JeM and MHL acknowledge HBM4EU (European Union’s Horizon 2020 research and innovation programme under the grant agreement no. 733032). TS acknowledges funding from NFDI4Chem—Chemistry Consortium in the NFDI (supported by the DFG under project number 441958208). TS, MaK, WB and EMLJ acknowledge NaToxAq (European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 722493). S36 and S63 (HPHA, SEH, MN, IS) were funded by the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) Project No. (FKZ) 3716 67 416 0, updates to S36 (HPHA, SEH, MN, IS) by the German Federal Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection (BMUV) Project No. (FKZ) 3719 65 408 0. MiK acknowledges financial support from the EU Cohesion Funds within the project Monitoring and assessment of water body status (No. 310011A366 Phase III). The work related to S60 and S82 was funded by the Swiss Federal Office for the Environment (FOEN), KK and JH acknowledge the input of Kathrin Fenner’s group (Eawag) in compiling transformation products from European pesticides registration dossiers. DSW and YDF were supported by the Canadian Institutes of Health Research and Genome Canada. The work related to S49, S48 and S77 was funded by the MAVA foundation; for S77 also the Valery Foundation (KG, JaM, BG). DML acknowledges National Science Foundation Grant RUI-1306074. YL acknowledges the National Natural Science Foundation of China (Grant No. 22193051 and 21906177), and the Chinese Postdoctoral Science Foundation (Grant No. 2019M650863). WLC acknowledges research project 108C002871 supported by the Environmental Protection Administration, Executive Yuan, R.O.C. Taiwan (Taiwan EPA). JG acknowledges funding from the Swiss Federal Office for the Environment. AJW was funded by the U.S. Environmental Protection Agency. LuB, AC and FH acknowledge the financial support of the Generalitat Valenciana (Research Group of Excellence, Prometeo 2019/040). KN (S89) acknowledges the PhD fellowship through Marie Skłodowska-Curie grant agreement No. 859891 (MSCA-ETN). Exposome-Explorer (S34) was funded by the European Commission projects EXPOsOMICS FP7-KBBE-2012 [308610]; NutriTech FP7-KBBE-2011-5 [289511]; Joint Programming Initiative FOODBALL 2014–17. CP acknowledges grant RYC2020-028901-I funded by MCIN/AEI/1.0.13039/501100011033 and “ESF investing in your future”, and August T Larsson Guest Researcher Programme from the Swedish University of Agricultural Sciences. The work of ML, MaSe, SG, TL and WS creating and filling the STOFF-IDENT database (S2) mostly sponsored by the German Federal Ministry of Education and Research within the RiSKWa program (funding codes 02WRS1273 and 02WRS1354). XT acknowledges The National Food Institute, Technical University of Denmark. MaSch acknowledges funding by the RECETOX research infrastructure (the Czech Ministry of Education, Youth and Sports, LM2018121), the CETOCOEN PLUS project (CZ.02.1.01/0.0/0.0/15_003/0000469), and the CETOCOEN EXCELLENCE Teaming 2 project supported by the Czech ministry of Education, Youth and Sports (No CZ.02.1.01/0.0/0.0/17_043/0009632).Peer reviewe

    Wildfire Smoke Impacts on Indoor Air Quality Assessed Using Crowdsourced Data in California

    No full text
    Wildfires have become the dominant source of particulate matter (PM2.5, < 2.5 µm diameter) leading to unhealthy air quality index occurrences in the western United States. Since people mainly shelter indoors during wildfire smoke events, the infiltration of wildfire PM2.5 into indoor environments is a key determinant of human exposure, and is potentially controllable with appropriate awareness, infrastructure investment, and public education. Using time-resolved observations outside and inside over 1400 buildings from the crowdsourced PurpleAir sensor network in California, we found that infiltration ratios (indoor PM­2.5 of outdoor origin/outdoor PM2.5) were reduced on average from 0.4 during non-fire days to 0.2 during wildfire days. Even with reduced infiltration, mean indoor concentration of PM2.5 nearly tripled during wildfire events, with lower infiltration in newer buildings and those utilizing air conditioning or filtration. </p

    Wildfire smoke impacts on indoor air quality assessed using crowdsourced data in California

    No full text
    Wildfires have become an important source of particulate matter (PM2.5 &lt; 2.5-µm diameter), leading to unhealthy air quality index occurrences in the western United States. Since people mainly shelter indoors during wildfire smoke events, the infiltration of wildfire PM2.5 into indoor environments is a key determinant of human exposure and is potentially controllable with appropriate awareness, infrastructure investment, and public education. Using time-resolved observations outside and inside more than 1,400 buildings from the crowdsourced PurpleAir sensor network in California, we found that the geometric mean infiltration ratios (indoor PM2.5 of outdoor origin/outdoor PM2.5) were reduced from 0.4 during non-fire days to 0.2 during wildfire days. Even with reduced infiltration, the mean indoor concentration of PM2.5 nearly tripled during wildfire events, with a lower infiltration in newer buildings and those utilizing air conditioning or filtration
    corecore