39 research outputs found

    Nonlinearity in Single Photon Detection: Modeling and Quantum Tomography

    Full text link
    Single Photon Detectors are integral to quantum optics and quantum information. Superconducting Nanowire based detectors exhibit new levels of performance, but have no accepted quantum optical model that is valid for multiple input photons. By performing Detector Tomography, we improve the recently proposed model [M.K. Akhlaghi and A.H. Majedi, IEEE Trans. Appl. Supercond. 19, 361 (2009)] and also investigate the manner in which these detectors respond nonlinearly to light, a valuable feature for some applications. We develop a device independent model for Single Photon Detectors that incorporates this nonlinearity

    The phase sensitivity of a fully quantum three-mode nonlinear interferometer

    Full text link
    We study a nonlinear interferometer consisting of two consecutive parametric amplifiers, where all three optical fields (pump, signal and idler) are treated quantum mechanically, allowing for pump depletion and other quantum phenomena. The interaction of all three fields in the final amplifier leads to an interference pattern from which we extract the phase uncertainty. We find that the phase uncertainty oscillates around a saturation level that decreases as the mean number NN of input pump photons increases. For optimal interaction strengths, we also find a phase uncertainty below the shot-noise level and obtain a Heisenberg scaling 1/N1/N. This is in contrast to the conventional treatment within the parametric approximation, where the Heisenberg scaling is observed as a function of the number of down-converted photons inside the interferometer.Comment: 8 pages, 7 figure

    Quantum metrology timing limits of the Hong-Ou-Mandel interferometer and of general two-photon measurements

    Full text link
    We examine the precision limits of Hong-Ou-Mandel (HOM) timing measurements, as well as precision limits applying to generalized two-photon measurements. As a special case, we consider the use of two-photon measurements using photons with variable bandwidths and frequency correlations. When the photon bandwidths are not equal, maximizing the measurement precision involves a trade-off between high interference visibility and strong frequency anticorrelations, with the optimal precision occuring when the photons share non-maximal frequency anticorrelations. We show that a generalized measurement has precision limits that are qualitatively similar to those of the HOM measurement whenever the generalized measurement is insensitive to the net delay of both photons. By examining the performance of states with more general frequency distributions, our analysis allows for engineering of the joint spectral amplitude for use in realistic situations, in which both photons may not have ideal spectral properties.Comment: 12 pages, 6 figures; resubmissio

    Direct measurement of general quantum states using weak measurement

    Full text link
    Recent work [J.S. Lundeen et al. Nature, 474, 188 (2011)] directly measured the wavefunction by weakly measuring a variable followed by a normal (i.e. `strong') measurement of the complementary variable. We generalize this method to mixed states by considering the weak measurement of various products of these observables, thereby providing the density matrix an operational definition in terms of a procedure for its direct measurement. The method only requires measurements in two bases and can be performed `in situ', determining the quantum state without destroying it.Comment: This is a later and very different version of arXiv:1110.0727v3 [quant-ph]. New content: a method to directly measure each element of the density matrix, specific Hamiltonians to weakly measure the product of non-commuting observables, and references to recent related wor

    Direct Measurement of the Quantum Wavefunction

    Full text link
    Central to quantum theory, the wavefunction is the complex distribution used to completely describe a quantum system. Despite its fundamental role, it is typically introduced as an abstract element of the theory with no explicit definition. Rather, physicists come to a working understanding of the wavefunction through its use to calculate measurement outcome probabilities via the Born Rule. Presently, scientists determine the wavefunction through tomographic methods, which estimate the wavefunction that is most consistent with a diverse collection of measurements. The indirectness of these methods compounds the problem of defining the wavefunction. Here we show that the wavefunction can be measured directly by the sequential measurement of two complementary variables of the system. The crux of our method is that the first measurement is performed in a gentle way (i.e. weak measurement) so as not to invalidate the second. The result is that the real and imaginary components of the wavefunction appear directly on our measurement apparatus. We give an experimental example by directly measuring the transverse spatial wavefunction of a single photon, a task not previously realized by any method. We show that the concept is universal, being applicable both to other degrees of freedom of the photon (e.g. polarization, frequency, etc.) and to other quantum systems (e.g. electron spin-z quantum state, SQUIDs, trapped ions, etc.). Consequently, this method gives the wavefunction a straightforward and general definition in terms of a specific set of experimental operations. We expect it to expand the range of quantum systems scientists are able to characterize and initiate new avenues to understand fundamental quantum theory
    corecore