3,078 research outputs found

    Quantum Sampling Problems, BosonSampling and Quantum Supremacy

    Full text link
    There is a large body of evidence for the potential of greater computational power using information carriers that are quantum mechanical over those governed by the laws of classical mechanics. But the question of the exact nature of the power contributed by quantum mechanics remains only partially answered. Furthermore, there exists doubt over the practicality of achieving a large enough quantum computation that definitively demonstrates quantum supremacy. Recently the study of computational problems that produce samples from probability distributions has added to both our understanding of the power of quantum algorithms and lowered the requirements for demonstration of fast quantum algorithms. The proposed quantum sampling problems do not require a quantum computer capable of universal operations and also permit physically realistic errors in their operation. This is an encouraging step towards an experimental demonstration of quantum algorithmic supremacy. In this paper, we will review sampling problems and the arguments that have been used to deduce when sampling problems are hard for classical computers to simulate. Two classes of quantum sampling problems that demonstrate the supremacy of quantum algorithms are BosonSampling and IQP Sampling. We will present the details of these classes and recent experimental progress towards demonstrating quantum supremacy in BosonSampling.Comment: Survey paper first submitted for publication in October 2016. 10 pages, 4 figures, 1 tabl

    The importance of 15O(a,g)19Ne to X-ray bursts and superbursts

    Full text link
    One of the two breakout reactions from the hot CNOcycle is 15O(a,g)19Ne, which at low temperatures depends strongly on the resonance strength of the 4.033 MeV state in 19Ne. An experimental upper limit has been placed on its strength, but the lower limit on the resonance strength and thereby the astrophysical reaction rate is unconstrained experimentally. However, this breakout reaction is crucial to the thermonuclear runaway which causes type I X-ray bursts on accreting neutron stars. In this paper we exploit astronomical observations in an attempt to constrain the relevant nuclear physics and deduce a lower limit on the reaction rate. Our sensitivity study implies that if the rate were sufficiently small, accreting material would burn stably without bursts. The existence of type I X-ray bursts and superbursts consequently suggests a lower limit on the 15O(a,g)19Ne reaction rate at low temperatures.Comment: 10 pages, 4 figures, uses apj.sty, accepted for publ. in Astrophys.
    • …
    corecore