236 research outputs found
Acidification increases microbial polysaccharide degradation in the ocean
© The Authors, 2010. This article is distributed under the terms of the Creative Commons Attribution 3.0 License. The definitive version was published in Biogeosciences 7 (2010): 1615–1624, doi:10.5194/bg-7-1615-2010.With the accumulation of anthropogenic carbon dioxide (CO2), a proceeding decline in seawater pH has been induced that is referred to as ocean acidification. The ocean's capacity for CO2 storage is strongly affected by biological processes, whose feedback potential is difficult to evaluate. The main source of CO2 in the ocean is the decomposition and subsequent respiration of organic molecules by heterotrophic bacteria. However, very little is known about potential effects of ocean acidification on bacterial degradation activity. This study reveals that the degradation of polysaccharides, a major component of marine organic matter, by bacterial extracellular enzymes was significantly accelerated during experimental simulation of ocean acidification. Results were obtained from pH perturbation experiments, where rates of extracellular α- and β-glucosidase were measured and the loss of neutral and acidic sugars from phytoplankton-derived polysaccharides was determined. Our study suggests that a faster bacterial turnover of polysaccharides at lowered ocean pH has the potential to reduce carbon export and to enhance the respiratory CO2 production in the future ocean.This study was supported by the Helmholtz
Association (HZ-NG-102) and the Belgian Science Policy
(SD/CS/03)
Chromatic Signals Control Proboscis Movements during Hovering Flight in the Hummingbird Hawkmoth Macroglossum stellatarum
Most visual systems are more sensitive to luminance than to colour signals. Animals resolve finer spatial detail and temporal changes through achromatic signals than through chromatic ones. Probably, this explains that detection of small, distant, or moving objects is typically mediated through achromatic signals. Macroglossum stellatarum are fast flying nectarivorous hawkmoths that inspect flowers with their long proboscis while hovering. They can visually control this behaviour using floral markings known as nectar guides. Here, we investigate whether this is mediated by chromatic or achromatic cues. We evaluated proboscis placement, foraging efficiency, and inspection learning of naïve moths foraging on flower models with coloured markings that offered either chromatic, achromatic or both contrasts. Hummingbird hawkmoths could use either achromatic or chromatic signals to inspect models while hovering. We identified three, apparently independent, components controlling proboscis placement: After initial contact, 1) moths directed their probing towards the yellow colour irrespectively of luminance signals, suggesting a dominant role of chromatic signals; and 2) moths tended to probe mainly on the brighter areas of models that offered only achromatic signals. 3) During the establishment of the first contact, naïve moths showed a tendency to direct their proboscis towards the small floral marks independent of their colour or luminance. Moths learned to find nectar faster, but their foraging efficiency depended on the flower model they foraged on. Our results imply that M. stellatarum can perceive small patterns through colour vision. We discuss how the different informational contents of chromatic and luminance signals can be significant for the control of flower inspection, and visually guided behaviours in general
Coagulation and fragmentation dynamics of inertial particles
Inertial particles suspended in many natural and industrial flows undergo
coagulation upon collisions and fragmentation if their size becomes too large
or if they experience large shear. Here we study this coagulation-fragmentation
process in time-periodic incompressible flows. We find that this process
approaches an asymptotic, dynamical steady state where the average number of
particles of each size is roughly constant. We compare the steady-state size
distributions corresponding to two fragmentation mechanisms and for different
flows and find that the steady state is mostly independent of the coagulation
process. While collision rates determine the transient behavior, fragmentation
determines the steady state. For example, for fragmentation due to shear, flows
that have very different local particle concentrations can result in similar
particle size distributions if the temporal or spatial variation of shear
forces is similar.Comment: 8 pages, 7 figure
FReD: the Floral Reflectance Database - a web portal for analyses of flower colour
Background: Flower colour is of great importance in various fields relating to floral biology and pollinator behaviour. However, subjective human judgements of flower colour may be inaccurate and are irrelevant to the ecology and vision of the flower's pollinators. For precise, detailed information about the colours of flowers, a full reflectance spectrum for the flower of interest should be used rather than relying on such human assessments.
Methodology/Principal Findings: The Floral Reflectance Database (FReD) has been developed to make an extensive collection of such data available to researchers. It is freely available at http://www.reflectance.co.uk. The database allows users to download spectral reflectance data for flower species collected from all over the world. These could, for example, be used in modelling interactions between pollinator vision and plant signals, or analyses of flower colours in various habitats. The database contains functions for calculating flower colour loci according to widely-used models of bee colour space, reflectance graphs of the spectra and an option to search for flowers with similar colours in bee colour space.
Conclusions/Significance: The Floral Reflectance Database is a valuable new tool for researchers interested in the colours of flowers and their association with pollinator colour vision, containing raw spectral reflectance data for a large number of flower species
История развития физической культуры и спорта на Урале в дореволюционный период
На сегодняшний день становится чрезвычайно актуальным рассмотрение феномена физической культуры и спорта сквозь призму принципа историзма. Существует еще много неизвестного в истории физической культуры, что требует переоценки событий, фактов с позиции современност
Long working hours and risk of coronary heart disease and stroke: a systematic review and meta-analysis of published and unpublished data for 603 838 individuals
Background: Long working hours might increase the risk of cardiovascular disease, but prospective evidence is scarce, imprecise, and mostly limited to coronary heart disease. We aimed to assess long working hours as a risk factor for incident coronary heart disease and stroke. /
Methods: We identified published studies through a systematic review of PubMed and Embase from inception to Aug 20, 2014. We obtained unpublished data for 20 cohort studies from the Individual-Participant-Data Meta-analysis in Working Populations (IPD-Work) Consortium and open-access data archives. We used cumulative random-effects meta-analysis to combine effect estimates from published and unpublished data. / Findings: We included 25 studies from 24 cohorts in Europe, the USA, and Australia. The meta-analysis of coronary heart disease comprised data for 603 838 men and women who were free from coronary heart disease at baseline; the meta-analysis of stroke comprised data for 528 908 men and women who were free from stroke at baseline. Follow-up for coronary heart disease was 5·1 million person-years (mean 8·5 years), in which 4768 events were recorded, and for stroke was 3·8 million person-years (mean 7·2 years), in which 1722 events were recorded. In cumulative meta-analysis adjusted for age, sex, and socioeconomic status, compared with standard hours (35–40 h per week), working long hours (≥55 h per week) was associated with an increase in risk of incident coronary heart disease (relative risk [RR] 1·13, 95% CI 1·02–1·26; p=0·02) and incident stroke (1·33, 1·11–1·61; p=0·002). The excess risk of stroke remained unchanged in analyses that addressed reverse causation, multivariable adjustments for other risk factors, and different methods of stroke ascertainment (range of RR estimates 1·30–1·42). We recorded a dose–response association for stroke, with RR estimates of 1·10 (95% CI 0·94–1·28; p=0·24) for 41–48 working hours, 1·27 (1·03–1·56; p=0·03) for 49–54 working hours, and 1·33 (1·11–1·61; p=0·002) for 55 working hours or more per week compared with standard working hours (ptrend<0·0001). / Interpretation: Employees who work long hours have a higher risk of stroke than those working standard hours; the association with coronary heart disease is weaker. These findings suggest that more attention should be paid to the management of vascular risk factors in individuals who work long hours. / Funding: Medical Research Council, Economic and Social Research Council, European Union New and Emerging Risks in Occupational Safety and Health research programme, Finnish Work Environment Fund, Swedish Research Council for Working Life and Social Research, German Social Accident Insurance, Danish National Research Centre for the Working Environment, Academy of Finland, Ministry of Social Affairs and Employment (Netherlands), US National Institutes of Health, British Heart Foundation
Mechanistic origins of variability in phytoplankton dynamics. Part II: analysis of mesocosm blooms under climate change scenarios
Driving factors of phytoplankton spring blooms have been discussed since long, but rarely analyzed quantitatively. Here, we use a mechanistic size-based ecosystem model to reconstruct observations made during the Kiel mesocosm experiments (2005–2006). The model accurately hindcasts highly variable bloom developments including community shifts in cell size. Under low light, phytoplankton dynamics was mostly controlled by selective mesozooplankton grazing. Selective grazing also explains initial dominance of large diatoms under high light conditions. All blooms were mainly terminated by aggregation and sedimentation. Allometries in nutrient uptake capabilities led to a delayed, post-bloom dominance of small species. In general, biomass and trait dynamics revealed many mutual dependencies, while growth factors decoupled from the respective selective forces. A size shift induced by one factor often changed the growth dependency on other factors. Within climate change scenarios, these indirect effects produced large sensitivities of ecosystem fluxes to the size distribution of winter phytoplankton. These sensitivities exceeded those found for changes in vertical mixing, whereas temperature changes only had minimal impacts
Do Queens of Bumblebee Species Differ In Their Choice Of Flower Colour Morphs Of Corydalis Cava (Fumariaceae)?
International audienceAbstractBumblebee queens require a continuous supply of flowering food plants from early spring for the successful development of annual colonies. Early in spring, Corydalis cava provides essential nectar and pollen resources and a choice of flower colour. In this paper, we examine flower colour choice (purple or white) in C. cava and verify the hypothesis that bumblebee queens differ in their choice of flower colour. A total of 10,615 observations of flower visits were made in spring 2011 and spring 2014 near Poznań, western Poland. Our results suggest that Bombus lucorum/cryptarum used purple flowers less, while Bombus terrestris used purple flowers more and Bombus hortorum showed no preference. Therefore, the colour morphs of C. cava are probably co-evolutionary adaptations to the development of another part of the insect community which has different colour preferences
- …