19,377 research outputs found

    Automated Particle Identification through Regression Analysis of Size, Shape and Colour

    Get PDF
    Rapid point of care diagnostic tests and tests to provide therapeutic information are now available for a range of specific conditions from the measurement of blood glucose levels for diabetes to card agglutination tests for parasitic infections. Due to a lack of specificity these test are often then backed up by more conventional lab based diagnostic methods for example a card agglutination test may be carried out for a suspected parasitic infection in the field and if positive a blood sample can then be sent to a lab for confirmation. The eventual diagnosis is often achieved by microscopic examination of the sample. In this paper we propose a computerized vision system for aiding in the diagnostic process; this system used a novel particle recognition algorithm to improve specificity and speed during the diagnostic process. We will show the detection and classification of different types of cells in a diluted blood sample using regression analysis of their size, shape and colour. The first step is to define the objects to be tracked by a Gaussian Mixture Model for background subtraction and binary opening and closing for noise suppression. After subtracting the objects of interest from the background the next challenge is to predict if a given object belongs to a certain category or not. This is a classification problem, and the output of the algorithm is a Boolean value (true/false). As such the computer program should be able to ”predict” with reasonable level of confidence if a given particle belongs to the kind we are looking for or not. We show the use of a binary logistic regression analysis with three continuous predictors: size, shape and color histogram. The results suggest this variables could be very useful in a logistic regression equation as they proved to have a relatively high predictive value on their own

    Modelling the Product Development performance of Colombian Companies

    Get PDF
    Organised by: Cranfield UniversityThis paper presents the general model of the Product Development Process (PDP) in the Metal mechanics Industry in Barranquilla-Colombia, since this sector contributes significantly to the productivity of this industrial city. This case study counted on a five-company sample. The main goal was to model the current conditions of the PDP according to the Concurrent Engineering philosophy. The companies were selected according to their productive profile, in order to contrast differences regarding the structure of their productive processes, conformation of multidisciplinary teams, integration of different areas, customers and suppliers to the PDP; human resources, information, technology and marketing constraints.Mori Seiki – The Machine Tool Compan

    Energy-dependent dipole form factor in a QCD-inspired model

    Full text link
    We consider the effect of an energy-dependent dipole form factor in the high-energy behavior of the forward amplitude. The connection between the semihard parton-level dynamics and the hadron-hadron scattering is established by an eikonal QCD-based model. Our results for the proton-proton (pppp) and antiproton-proton (pˉp\bar{p}p) total cross sections, σtotpp,pˉp(s)\sigma_{tot}^{pp,\bar{p}p}(s), obtained using the CTEQ6L1 parton distribution function, are consistent with the recent data from the TOTEM experiment.Comment: 7 pages, 1 figure; Contribution to Proceedings of XIIIth International Workshop on Hadron Physics, Angra dos Reis, Brazil, 22-27 March, 201

    The small xx behavior of the gluon structure function from total cross sections

    Full text link
    Within a QCD-based eikonal model with a dynamical infrared gluon mass scale we discuss how the small xx behavior of the gluon distribution function at moderate Q2Q^{2} is directly related to the rise of total hadronic cross sections. In this model the rise of total cross sections is driven by gluon-gluon semihard scattering processes, where the behavior of the small xx gluon distribution function exhibits the power law xg(x,Q2)=h(Q2)xϵxg(x,Q^2)= h(Q^2)x^{-\epsilon}. Assuming that the Q2Q^{2} scale is proportional to the dynamical gluon mass one, we show that the values of h(Q2)h(Q^2) obtained in this model are compatible with an earlier result based on a specific nonperturbative Pomeron model. We discuss the implications of this picture for the behavior of input valence-like gluon distributions at low resolution scales.Comment: 19 pages, 3 figures; revised version; to appear in Int. J. Mod. Phys.
    corecore