76 research outputs found

    Therapeutic Strategies Targeting Cancer Stem Cells and Their Microenvironment

    Get PDF
    Cancer stem cells (CSCs) have been demonstrated in a variety of tumors and are thought to act as a clonogenic core for the genesis of new tumor growth. This small subpopulation of cancer cells has been proposed to help drive tumorigenesis, metastasis, recurrence and conventional therapy resistance. CSCs show self-renewal and flexible clonogenic properties and help define specific tumor microenvironments (TME). The interaction between CSCs and TME is thought to function as a dynamic support system that fosters the generation and maintenance of CSCs. Investigation of the interaction between CSCs and the TME is shedding light on the biologic mechanisms underlying the process of tumor malignancy, metastasis, and therapy resistance. We summarize recent advances in CSC biology and their environment, and discuss the challenges and future strategies for targeting this biology as a new therapeutic approach

    RA190, a Proteasome Subunit ADRM1 Inhibitor, Suppresses Intrahepatic Cholangiocarcinoma by Inducing NF-KB-Mediated Cell Apoptosis

    Get PDF
    Background/Aims: Effective drug treatment for intrahepatic cholangiocarcinoma (ICC) is currently lacking. Therefore, there is an urgent need for new targets and new drugs that can prolong patient survival. Recently targeting the ubiquitin proteasome pathway has become an attractive anti-cancer strategy. In this study, we aimed to evaluate the therapeutic effect of and identify the potential mechanisms involved in targeting the proteasome subunit ADRM1 for ICC. Methods: The expression of ADRM1 and its prognostic value in ICC was analyzed using GEO and TCGA datasets, tumor tissues, and tumor tissue arrays. The effects of RA190 on the proliferation and survival of both established ICC cell lines and primary ICC cells were examined in vitro. Annexin V/propidium iodide staining, western blotting and immunohistochemical staining were performed. The in vivo anti-tumor effect of RA190 on ICC was validated in subcutaneous xenograft and patient-derived xenograft (PDX) models. Results: ADRM1 levels were significantly higher in ICC tissues than in normal bile duct tissues. ICC patients with high ADRM1 levels had worse overall survival (hazard ratio [HR] = 2.383, 95% confidence interval [CI] =1.357 to 4.188) and recurrence-free survival (HR = 1.710, 95% CI =1.045 to 2.796). ADRM1 knockdown significantly inhibited ICC growth in vitro and in vivo. The specific inhibitor RA190 targeting ADRM1 suppressed proliferation and reduced cell vitality of ICC cell lines and primary ICC cells significantly in vitro. Furthermore, RA190 significantly inhibited the proteasome by inactivating ADRM1, and the consequent accumulation of ADRM1 substrates decreased the activating levels of NF-κB to aggravate cell apoptosis. The therapeutic benefits of RA190 treatment were further demonstrated in both subcutaneous implantation and PDX models. Conclusions: Our findings indicate that up-regulated ADRM1 was involved in ICC progression and suggest the potential clinical application of ADRM1 inhibitors (e.g., RA190 and KDT-11) for ICC treatment

    Suitable reference genes for real-time PCR in human HBV-related hepatocellular carcinoma with different clinical prognoses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Housekeeping genes are routinely used as endogenous references to account for experimental differences in gene expression assays. However, recent reports show that they could be de-regulated in different diseases, model animals, or even under varied experimental conditions, which may lead to unreliable results and consequently misinterpretations. This study focused on the selection of suitable reference genes for quantitative PCR in human hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) with different clinical outcomes.</p> <p>Methods</p> <p>We evaluated 6 commonly used housekeeping genes' expression levels in 108 HBV-related HCCs' matched tumor and non-tomor tissue samples with different clinical outcomes and 26 normal liver specimens by real-time PCR. The expression stability of the 6 genes was compared using the software programs geNorm and NormFinder. To show the impact of reference genes on data analysis, we took PGK1 as a target gene normalized by each reference gene, and performed one-way ANOVA and the equivalence test.</p> <p>Results</p> <p>With the geNorm and NormFinder software programs, analysis of TBP and HPRT1 showed the best stability in all tissue samples, while 18s and ACTB were less stable. When 18s or ACTB was used for normalization, no significant difference of PGK1 expression (p > 0.05) was found among HCC tissues with and without metastasis, and normal liver specimens; however, dramatically differences (p < 0.001) were observed when either TBP or the combination of TBP and HPRT1 were selected as reference genes.</p> <p>Conclusion</p> <p>TBP and HPRT1 are the most reliable reference genes for q-PCR normalization in HBV-related HCC specimens. However, the well-used ACTB and 18S are not suitable, which actually lead to the misinterpretation of the results in gene expression analysis.</p

    Suitable reference genes for real-time PCR in human HBV-related hepatocellular carcinoma with different clinical prognoses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Housekeeping genes are routinely used as endogenous references to account for experimental differences in gene expression assays. However, recent reports show that they could be de-regulated in different diseases, model animals, or even under varied experimental conditions, which may lead to unreliable results and consequently misinterpretations. This study focused on the selection of suitable reference genes for quantitative PCR in human hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) with different clinical outcomes.</p> <p>Methods</p> <p>We evaluated 6 commonly used housekeeping genes' expression levels in 108 HBV-related HCCs' matched tumor and non-tomor tissue samples with different clinical outcomes and 26 normal liver specimens by real-time PCR. The expression stability of the 6 genes was compared using the software programs geNorm and NormFinder. To show the impact of reference genes on data analysis, we took PGK1 as a target gene normalized by each reference gene, and performed one-way ANOVA and the equivalence test.</p> <p>Results</p> <p>With the geNorm and NormFinder software programs, analysis of TBP and HPRT1 showed the best stability in all tissue samples, while 18s and ACTB were less stable. When 18s or ACTB was used for normalization, no significant difference of PGK1 expression (p > 0.05) was found among HCC tissues with and without metastasis, and normal liver specimens; however, dramatically differences (p < 0.001) were observed when either TBP or the combination of TBP and HPRT1 were selected as reference genes.</p> <p>Conclusion</p> <p>TBP and HPRT1 are the most reliable reference genes for q-PCR normalization in HBV-related HCC specimens. However, the well-used ACTB and 18S are not suitable, which actually lead to the misinterpretation of the results in gene expression analysis.</p

    EpCAM-Positive Hepatocellular Carcinoma Cells Are Tumor-Initiating Cells With Stem/Progenitor Cell Features

    Get PDF
    Cancer progression/metastases and embryonic development share many properties including cellular plasticity, dynamic cell motility, and integral interaction with the microenvironment. We hypothesized that the heterogeneous nature of hepatocellular carcinoma (HCC) may be, in part, due to the presence of hepatic cancer cells with stem/progenitor features

    Identification of microRNA-181 by genome-wide screening as a critical player in EpCAM-positive hepatic cancer stem cells

    Get PDF
    MicroRNAs (miRNAs) are endogenous small non-coding RNAs that regulate gene expression with functional links to tumorigenesis. Hepatocellular carcinoma (HCC) is the most common type of liver cancer and it is heterogeneous in clinical outcomes and biological activities. Recently, we have identified a subset of highly invasive EpCAM+ HCC cells from AFP+ tumors with cancer stem/progenitor cell features, i.e., the abilities to self-renew, differentiate and initiate aggressive tumors in vivo. Here, using a global microarray-based microRNA profiling approach followed by validation with quantitative reverse transcription polymerase chain reaction, we have demonstrated that conserved miR-181 family members were upregulated in EpCAM+AFP+ HCCs and in EpCAM+ HCC cells isolated from AFP+ tumors. Moreover, miR-181 family members were highly expressed in embryonic livers and in isolated hepatic stem cells. Importantly, inhibition of miR-181 led to a reduction in EpCAM+ HCC cell quantity and tumor initiating ability, while exogenous miR-181 expression in HCC cells resulted in an enrichment of EpCAM+ HCC cells. We have found that miR-181 could directly target hepatic transcriptional regulators of differentiation (i.e., CDX2 and GATA6) and an inhibitor of wnt/β-catenin signaling (i.e., NLK). Taken together, our results define a novel regulatory link between miR-181s and human EpCAM+ liver cancer stem/progenitor cells and imply that molecular targeting of miR-181 may eradicate HCC

    Identification of MSRA gene on chromosome 8p as a candidate metastasis suppressor for human hepatitis B virus-positive hepatocellular carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prognosis of patients with hepatocellular carcinoma (HCC) still remains very dismal, which is mainly due to metastasis. In our previous studies, we found that chromosome 8p deletions might contribute to metastasis of HCC. In this study, we aimed to identify the candidate metastatic suppressor gene on chromosome 8p.</p> <p>Methods</p> <p>Oligo-nucleotide microarrays which included 322 genes on human chromosome 8p were constructed to analyze the difference in gene expression profiles between HCC tissues with and without metastasis. The leading differentially expressed genes were identified and selected for further analysis by real-time PCR and Western blotting. Recombinant expression plasmid vectors for each target gene were constructed and transfected into HCC cells and its <it>in vitro </it>effects on proliferation and invasion of HCC cells were also investigated.</p> <p>Results</p> <p>Sixteen leading differentially expressed genes were identified from the HCC tissues with metastasis compared with those without metastasis (<it>p </it>< 0.01, <it>q </it>< 16 %). Among of the 10 significantly down-regulated genes in HCC with metastasis, methionine sulfoxide reductase A (<it>MSRA</it>) had the lowest <it>p </it>value and false discovery rate (FDR), and was considered as a potential candidate for metastasis suppressor gene. Real-time PCR and Western blotting confirmed that the mRNA and protein expression levels of <it>MSRA </it>were significantly decreased in HCC with metastasis compared with those without metastasis (<it>p </it>< 0.001), and <it>MSRA </it>mRNA level in HCCLM6 cells (with high metastatic potential) was also much lower than that of other HCC cell lines. Transfection of a recombinant expression plasmid vector and overexpression of <it>MSRA </it>gene could obviously inhibit cell colony formation (4.33 ± 2.92 vs. 9.17 ± 3.38, <it>p </it>= 0.008) and invasion (7.40 ± 1.67 vs. 17.20 ± 2.59, <it>p</it>= 0.0001) of HCCLM6 cell line.</p> <p>Conclusion</p> <p><it>MSRA </it>gene on chromosome 8p might possess metastasis suppressor activity in HCC.</p

    The prognostic molecular markers in hepatocellular carcinoma

    No full text

    Chromosomal aberrations related to metastasis of human solid tumors

    No full text
    • …
    corecore