1,257 research outputs found

    Synchroscan streak camera imaging at a 15-MeV photoinjector with emittance exchange

    Full text link
    At the Fermilab A0 photoinjector facility, bunch-length measurements of the laser micropulse and the e-beam micropulse have been done in the past with a fast single-sweep module of the Hamamatsu C5680 streak camera with an intrinsic shot-to-shot trigger jitter of 10-20ps. We have upgraded the camera system with the synchroscan module tuned to 81.25MHz to provide synchronous summing capability with less than 1.5ps FWHM trigger jitter and a phase-locked delay box to provide phase stability of ~1ps over 10s of minutes. These steps allowed us to measure both the UV laser pulse train at 263nm and the e-beam via optical transition radiation (OTR). Due to the low electron beam energies and OTR signals, we typically summed over 50 micropulses with 0.25-1nC per micropulse. The phase-locked delay box allowed us to assess chromatic temporal effects and instigated another upgrade to an all-mirror input optics barrel. In addition, we added a slow sweep horizontal deflection plug-in unit to provide dual-sweep capability for the streak camera. We report on a series of measurements made during the commissioning of these upgrades including bunch-length and phase effects using the emittance exchange beamline and simultaneous imaging of a UV drive laser component, OTR, and the 800nm diagnostics laser.Comment: 26 p

    Feasibility of OTR imaging of non-relativistic ions at GSI

    Full text link
    The feasibility of using the optical transition radiation (OTR) generated as a 11.4- to 300-MeV/\mu ion beam passes through a single metal conducting plane for a minimally intercepting beam profile monitor for GSI/Darmstadt has been evaluated for the first time. Although these are non-relativistic beams, their beta and gamma values are similar to the 80-keV electron-beam imaging studies previously done on the CTF3 injector. With anticipated beam intensities of 109 to 1011 particles per pulse and the predicted charge-squared dependence of OTR, the ion charge state becomes a critical factor for photon production. The OTR signal from the ion charge integrated over the video field time should be comparable to or larger than the CTF3 electron case. These signal strengths will allow a series of experiments to be done that should further elucidate the working regime of this technique.Comment: 3 pp. Particle Accelerator, 24th Conference (PAC'11) 2011. 28 Mar - 1 Apr 2011. New York, US

    Advanced Intraundulator Electron Beam Diagnostics Using COTR Techniques

    Get PDF

    Upgrades of beam diagnostics in support of emittance-exchange experiments at the Fermilab A0 photoinjector

    Get PDF
    The possibility of using electron beam phase space manipulations to support a free-electron laser accelerator design optimization has motivated our research. An on-going program demonstrating the exchange of transverse horizontal and longitudinal emittances at the Fermilab A0 photoinjector has benefited recently from the upgrade of several of the key diagnostics stations. Accurate measurements of these properties upstream and downstream of the exchanger beamline are needed. Improvements in the screen resolution term and reduced impact of the optical system's depth-of-focus by using YAG:Ce single crystals normal to the beam direction will be described. The requirement to measure small energy spreads (<10 keV) in the spectrometer and the exchange process which resulted in bunch lengths less than 500 fs led to other diagnostics performance adjustments and upgrades as well. A longitudinal to transverse exchange example is also reported.Comment: 16 p
    • …
    corecore