8 research outputs found

    Chromatographic Examinations of Tea's Protection Against Lipid Oxidative Modifications

    Get PDF
    Ethanol metabolism is accompanied by generation of free radicals that damage cell components, especially lipids. The present study was designed to investigate the efficacy of the preventive effect of black tea on the lipid oxidative modifications in different tissues (plasma, liver, brain, kidney, stomach, lung, intestine, and spleen) of 12-month-old rats chronically intoxicated with ethanol. Ethanol intoxication caused changes in the level/activity of antioxidants that led to the significant increase in the level of lipid oxidative modification products. Oxidative modifications were estimated by measuring lipid hydroperoxides, malondialdehyde, and 4-hydroxynonenal by high-performance liquid chromatography (HPLC) and by spectrophotometric determination of conjugated dienes. These lipid-modification marker levels were increased in almost all examined tissues (3%ā€“71%) after ethanol intoxication. Described changes were in accordance with the liver level of the most often used marker of arachidonic acid oxidation, isoprostane (8-isoPGF2Ī±), determined by the LC/MS system. Administration of black tea to ethanol-intoxicated rats remarkably prevents the significant increase (by about 15%ā€“42%) in concentrations of all measured parameters regarding all examined tissues, but especially the plasma, liver, brain, stomach, and spleen. The preventive effect of black tea in the other organs (kidney, lung, intestine) caused a decrease in examined markers in a smaller degree (by about 7%ā€“28%). To determine in the liver the major constituents of black tea mainly responsible for antioxidative action such as catechins and theaflavins, which were absorbed in organism, the present study indicates their protective effect against ethanol-induced oxidative modifications of lipids

    Changes in Hepatic Gene Expression upon Oral Administration of Taurine-Conjugated Ursodeoxycholic Acid in ob/ob Mice

    Get PDF
    Nonalcoholic fatty liver disease (NAFLD) is highly prevalent and associated with considerable morbidities. Unfortunately, there is no currently available drug established to treat NAFLD. It was recently reported that intraperitoneal administration of taurine-conjugated ursodeoxycholic acid (TUDCA) improved hepatic steatosis in ob/ob mice. We hereby examined the effect of oral TUDCA treatment on hepatic steatosis and associated changes in hepatic gene expression in ob/ob mice. We administered TUDCA to ob/ob mice at a dose of 500 mg/kg twice a day by gastric gavage for 3 weeks. Body weight, glucose homeostasis, endoplasmic reticulum (ER) stress, and hepatic gene expression were examined in comparison with control ob/ob mice and normal littermate C57BL/6J mice. Compared to the control ob/ob mice, TUDCA treated ob/ob mice revealed markedly reduced liver fat stained by oil red O (44.2Ā±5.8% vs. 21.1Ā±10.4%, P<0.05), whereas there was no difference in body weight, oral glucose tolerance, insulin sensitivity, and ER stress. Microarray analysis of hepatic gene expression demonstrated that oral TUDCA treatment mainly decreased the expression of genes involved in de novo lipogenesis among the components of lipid homeostasis. At pathway levels, oral TUDCA altered the genes regulating amino acid, carbohydrate, and drug metabolism in addition to lipid metabolism. In summary, oral TUDCA treatment decreased hepatic steatosis in ob/ob mice by cooperative regulation of multiple metabolic pathways, particularly by reducing the expression of genes known to regulate de novo lipogenesis

    Potential Applications of Gliclazide in Treating Type 1 Diabetes Mellitus: Formulation with Bile Acids and Probiotics

    No full text
    Ā© 2017 Springer International Publishing AG A major advancement in therapy of type 1 diabetes mellitus (T1DM) is the discovery of new treatment which avoids and even replaces the absolute requirement for injected insulin. The need for multiple drug therapy of comorbidities associated with T1DM increases demand for developing novel therapeutic alternatives with new mechanisms of actions. Compared to other sulphonylurea drugs used in the treatment of type 2 diabetes mellitus, gliclazide exhibits a pleiotropic action outside pancreatic Ɵ cells, the so-called extrapancreatic effects, such as antiinflammatory and cellular protective effects, which might be beneficial in the treatment of T1DM. Results from in vivo experiments confirmed the positive effects of gliclazide in T1DM that are even more pronounced when combined with other hypoglycaemic agents such as probiotics and bile acids. Even though the exact mechanism of interaction at the molecular level is still unknown, there is a clear synergistic effect between gliclazide, bile acids and probiotics illustrated by the reduction of blood glucose levels and improvement of diabetic complications. Therefore, the manipulation of bile acid pool and intestinal microbiota composition in combination with old drug gliclazide could be a novel therapeutic approach for patients with T1DM
    corecore