1,473 research outputs found

    Strong magnetic coupling between an electronic spin qubit and a mechanical resonator

    Get PDF
    We describe a technique that enables a strong, coherent coupling between a single electronic spin qubit associated with a nitrogen-vacancy impurity in diamond and the quantized motion of a magnetized nano-mechanical resonator tip. This coupling is achieved via careful preparation of dressed spin states which are highly sensitive to the motion of the resonator but insensitive to perturbations from the nuclear spin bath. In combination with optical pumping techniques, the coherent exchange between spin and motional excitations enables ground state cooling and the controlled generation of arbitrary quantum superpositions of resonator states. Optical spin readout techniques provide a general measurement toolbox for the resonator with quantum limited precision

    Quantum network of neutral atom clocks

    Get PDF
    We propose a protocol for creating a fully entangled GHZ-type state of neutral atoms in spatially separated optical atomic clocks. In our scheme, local operations make use of the strong dipole-dipole interaction between Rydberg excitations, which give rise to fast and reliable quantum operations involving all atoms in the ensemble. The necessary entanglement between distant ensembles is mediated by single-photon quantum channels and collectively enhanced light-matter couplings. These techniques can be used to create the recently proposed quantum clock network based on neutral atom optical clocks. We specifically analyze a possible realization of this scheme using neutral Yb ensembles.Comment: 13 pages, 11 figure

    Strong low-frequency quantum correlations from a four-wave mixing amplifier

    Full text link
    We show that a simple scheme based on nondegenerate four-wave mixing in a hot atomic vapor behaves like a near-perfect phase-insensitive optical amplifier, which can generate bright twin beams with a measured quantum noise reduction in the intensity difference of more than 8 dB, close to the best optical parametric amplifiers and oscillators. The absence of a cavity makes the system immune to external perturbations, and the strong quantum noise reduction is observed over a large frequency range.Comment: 4 pages, 4 figures. Major rewrite of the previous version. New experimental results and further analysi

    Comparative analyses of different variants of standard ground for automatic control systems of technical processes of oil and gas production

    Get PDF
    The paper analyses efficiency (interference resistance) of standard TT, TN, IT networks in control links of automatic control systems (ACS) of technical processes (TP) of oil and gas production. Electromagnetic compatibility (EMC) is a standard term used to describe the interference in grounding circuits. Improved EMC of ACS TP can significantly reduce risks and costs of malfunction of equipment that could have serious consequences. It has been proved that an IT network is the best type of grounds for protection of ACS TP in real life conditions. It allows reducing the interference down to the level that is stated in standards of oil and gas companies

    Efficient fiber-optical interface for nanophotonic devices

    Get PDF
    We demonstrate a method for efficient coupling of guided light from a single mode optical fiber to nanophotonic devices. Our approach makes use of single-sided conical tapered optical fibers that are evanescently coupled over the last ~10 um to a nanophotonic waveguide. By means of adiabatic mode transfer using a properly chosen taper, single-mode fiber-waveguide coupling efficiencies as high as 97(1)% are achieved. Efficient coupling is obtained for a wide range of device geometries which are either singly-clamped on a chip or attached to the fiber, demonstrating a promising approach for integrated nanophotonic circuits, quantum optical and nanoscale sensing applications.Comment: 7 pages, 4 figures, includes supplementary informatio

    Two-fluid and magnetohydrodynamic modelling of magnetic reconnection in the MAST spherical tokamak and the solar corona

    Full text link
    Twisted magnetic flux ropes are ubiquitous in space and laboratory plasmas, and the merging of such flux ropes through magnetic reconnection is an important mechanism for restructuring magnetic fields and releasing free magnetic energy. The merging-compression scenario is one possible start up scheme for spherical tokamaks, which has been used on the Mega Amp Spherical Tokamak MAST. Two current-carrying plasma rings, or flux ropes, approach each other through the mutual attraction of their like currents, and merge, through magnetic reconnection, into a single plasma torus, with substantial plasma heating. 2D resistive MHD and Hall MHD simulations of this process are reported, and new results for the temperature distribution of ions and electrons are presented. A model of the based on relaxation theory is also described, which is now extended to tight aspect ratio geometry. This model allows prediction of the final merged state and the heating. The implications of the relaxation model for heating of the solar corona are also discussed, and a model of the merger of two or more twisted coronal flux ropes is presented, allowing for different senses of twist

    Factors and mechanisms of productive secondary reservoirs formation in deep-lying oil and gas complexes. Article 1. Tectonophysical mechanisms of Lower Carboniferous quartzite-sandstones decompaction in the central part of the Dniprovsko-Donetska depression at the depths of more than 4.5 km

    Get PDF
    In the world, the scale of development of secondary reservoirs in decompaction rock bodies in a wide formation range is steadily increasing: from the crystalline basement of different ages of various oil and gas-bearing basins to terrigenous deposits with reduced primary porosity and carbonate formations. Development of hydrocarbon resources associated with secondary reservoirs of deep-seated complexes is the most important strategic direction of geological exploration. The results presented in this article are of fundamental importance, since they are based, firstly, mainly on the study of the core of deep-lying complexes, and secondly, on a significantly different (than in previous works) methodology (wide application of electron microscopic scanning with X-ray spectral probing and diffractometry), thirdly (and most importantly) – on a significantly different ideology. It is based on the concept of different genetic types of post-sedimentation transformations. Along with diagenesis and catagenesis, it is dislocation epigenesis and hypogene allogenesis with specific geodynamic and geothermodynamic regimes, including the special role of structural temperatures and pressures. In oil and gas-bearing basins of the continental-riftogenic (aulacogenic) type, the final stage of regional epigenesis is dislocation epigenesis with zonal and local manifestation of hypogene allogenesis. Gas and gas condensate deposits, as well as the main part of oil and heterophase deposits, are associated with this stage. The established regularities of the formation of secondary reservoirs are of particular importance for the effective development of the hydrocarbon potential of great depths
    corecore