1,473 research outputs found
Strong magnetic coupling between an electronic spin qubit and a mechanical resonator
We describe a technique that enables a strong, coherent coupling between a
single electronic spin qubit associated with a nitrogen-vacancy impurity in
diamond and the quantized motion of a magnetized nano-mechanical resonator tip.
This coupling is achieved via careful preparation of dressed spin states which
are highly sensitive to the motion of the resonator but insensitive to
perturbations from the nuclear spin bath. In combination with optical pumping
techniques, the coherent exchange between spin and motional excitations enables
ground state cooling and the controlled generation of arbitrary quantum
superpositions of resonator states. Optical spin readout techniques provide a
general measurement toolbox for the resonator with quantum limited precision
Quantum network of neutral atom clocks
We propose a protocol for creating a fully entangled GHZ-type state of
neutral atoms in spatially separated optical atomic clocks. In our scheme,
local operations make use of the strong dipole-dipole interaction between
Rydberg excitations, which give rise to fast and reliable quantum operations
involving all atoms in the ensemble. The necessary entanglement between distant
ensembles is mediated by single-photon quantum channels and collectively
enhanced light-matter couplings. These techniques can be used to create the
recently proposed quantum clock network based on neutral atom optical clocks.
We specifically analyze a possible realization of this scheme using neutral Yb
ensembles.Comment: 13 pages, 11 figure
Strong low-frequency quantum correlations from a four-wave mixing amplifier
We show that a simple scheme based on nondegenerate four-wave mixing in a hot
atomic vapor behaves like a near-perfect phase-insensitive optical amplifier,
which can generate bright twin beams with a measured quantum noise reduction in
the intensity difference of more than 8 dB, close to the best optical
parametric amplifiers and oscillators. The absence of a cavity makes the system
immune to external perturbations, and the strong quantum noise reduction is
observed over a large frequency range.Comment: 4 pages, 4 figures. Major rewrite of the previous version. New
experimental results and further analysi
Comparative analyses of different variants of standard ground for automatic control systems of technical processes of oil and gas production
The paper analyses efficiency (interference resistance) of standard TT, TN, IT networks in control links of automatic control systems (ACS) of technical processes (TP) of oil and gas production. Electromagnetic compatibility (EMC) is a standard term used to describe the interference in grounding circuits. Improved EMC of ACS TP can significantly reduce risks and costs of malfunction of equipment that could have serious consequences. It has been proved that an IT network is the best type of grounds for protection of ACS TP in real life conditions. It allows reducing the interference down to the level that is stated in standards of oil and gas companies
Efficient fiber-optical interface for nanophotonic devices
We demonstrate a method for efficient coupling of guided light from a single
mode optical fiber to nanophotonic devices. Our approach makes use of
single-sided conical tapered optical fibers that are evanescently coupled over
the last ~10 um to a nanophotonic waveguide. By means of adiabatic mode
transfer using a properly chosen taper, single-mode fiber-waveguide coupling
efficiencies as high as 97(1)% are achieved. Efficient coupling is obtained for
a wide range of device geometries which are either singly-clamped on a chip or
attached to the fiber, demonstrating a promising approach for integrated
nanophotonic circuits, quantum optical and nanoscale sensing applications.Comment: 7 pages, 4 figures, includes supplementary informatio
Two-fluid and magnetohydrodynamic modelling of magnetic reconnection in the MAST spherical tokamak and the solar corona
Twisted magnetic flux ropes are ubiquitous in space and laboratory plasmas,
and the merging of such flux ropes through magnetic reconnection is an
important mechanism for restructuring magnetic fields and releasing free
magnetic energy. The merging-compression scenario is one possible start up
scheme for spherical tokamaks, which has been used on the Mega Amp Spherical
Tokamak MAST. Two current-carrying plasma rings, or flux ropes, approach each
other through the mutual attraction of their like currents, and merge, through
magnetic reconnection, into a single plasma torus, with substantial plasma
heating. 2D resistive MHD and Hall MHD simulations of this process are
reported, and new results for the temperature distribution of ions and
electrons are presented. A model of the based on relaxation theory is also
described, which is now extended to tight aspect ratio geometry. This model
allows prediction of the final merged state and the heating. The implications
of the relaxation model for heating of the solar corona are also discussed, and
a model of the merger of two or more twisted coronal flux ropes is presented,
allowing for different senses of twist
Factors and mechanisms of productive secondary reservoirs formation in deep-lying oil and gas complexes. Article 1. Tectonophysical mechanisms of Lower Carboniferous quartzite-sandstones decompaction in the central part of the Dniprovsko-Donetska depression at the depths of more than 4.5 km
In the world, the scale of development of secondary reservoirs in decompaction rock bodies in a wide formation range is steadily increasing: from the crystalline basement of different ages of various oil and gas-bearing basins to terrigenous deposits with reduced primary porosity and carbonate formations. Development of hydrocarbon resources associated with secondary reservoirs of deep-seated complexes is the most important strategic direction of geological exploration. The results presented in this article are of fundamental importance, since they are based, firstly, mainly on the study of the core of deep-lying complexes, and secondly, on a significantly different (than in previous works) methodology (wide application of electron microscopic scanning with X-ray spectral probing and diffractometry), thirdly (and most importantly) – on a significantly different ideology. It is based on the concept of different genetic types of post-sedimentation transformations. Along with diagenesis and catagenesis, it is dislocation epigenesis and hypogene allogenesis with specific geodynamic and geothermodynamic regimes, including the special role of structural temperatures and pressures. In oil and gas-bearing basins of the continental-riftogenic (aulacogenic) type, the final stage of regional epigenesis is dislocation epigenesis with zonal and local manifestation of hypogene allogenesis. Gas and gas condensate deposits, as well as the main part of oil and heterophase deposits, are associated with this stage. The established regularities of the formation of secondary reservoirs are of particular importance for the effective development of the hydrocarbon potential of great depths
- …