133 research outputs found

    Electromagnetic field angular momentum in condensed matter systems

    Full text link
    Various electromagnetic systems can carry an angular momentum in their {\bf E} and {\bf B} fields. The electromagnetic field angular momentum (EMAM) of these systems can combine with the spin angular momentum to give composite fermions or composite bosons. In this paper we examine the possiblity that an EMAM could provide an explanation of the fractional quantum Hall effect (FQHE) which is complimentary to the Chern-Simons explanation. We also examine a toy model of a non-BCS superconductor (e.g. high TcT_c superconductors) in terms of an EMAM. The models presented give a common, simple picture of these two systems in terms of an EMAM. The presence of an EMAM in these systems might be tested through the observation of the decay modes of a charged, spin zero unstable particle inside one of these systems.Comment: 17 pages, no figures, to be published in Phys. Rev.

    Towards an access economy model for industrial process control : a bulk tailings treatment plant case study

    Get PDF
    A nonlinear model for the surge tank of Sibanye-Stillwater’s Platinum tailings treatment plant is derived and linearised. Three controllers (two classical feedback and one model predictive controller (MPC)) are presented for control of the plant, and it is shown that a decoupled proportional-integral (PI) control structure, as would be employed in practice, performs the worst, while a nonlinear MPC controller provides the best performance. To illustrate an access economy model concept for industrial process control, a cloud platform to facilitate the competition between various controllers is presented and a scenario given with the three controllers competing to control the surge tank process. The platform is shown to provide the plant access to a controller that performs better than what is available locally.https://www.journals.elsevier.com/ifac-papersonlineam2022Electrical, Electronic and Computer Engineerin

    Modeling water waves beyond perturbations

    Get PDF
    In this chapter, we illustrate the advantage of variational principles for modeling water waves from an elementary practical viewpoint. The method is based on a `relaxed' variational principle, i.e., on a Lagrangian involving as many variables as possible, and imposing some suitable subordinate constraints. This approach allows the construction of approximations without necessarily relying on a small parameter. This is illustrated via simple examples, namely the Serre equations in shallow water, a generalization of the Klein-Gordon equation in deep water and how to unify these equations in arbitrary depth. The chapter ends with a discussion and caution on how this approach should be used in practice.Comment: 15 pages, 1 figure, 39 references. This document is a contributed chapter to an upcoming volume to be published by Springer in Lecture Notes in Physics Series. Other author's papers can be downloaded at http://www.denys-dutykh.com

    Clinical activity of ipilimumab for metastatic uveal melanoma: a retrospective review of the Dana-Farber Cancer Institute, Massachusetts General Hospital, Memorial Sloan-Kettering Cancer Center, and University Hospital of Lausanne experience.

    Get PDF
    BACKGROUND: Uveal melanoma exhibits a high incidence of metastases; and, to date, there is no systemic therapy that clearly improves outcomes. The anticytotoxic T-lymphocyte-associated protein 4 (anti-CTLA-4) antibody ipilimumab is a standard of care for metastatic melanoma; however, the clinical activity of CTLA-4 inhibition in patients with metastatic uveal melanoma is poorly defined. METHODS: To assess ipilimumab in this setting, the authors performed a multicenter, retrospective analysis of 4 hospitals in the United States and Europe. Clinical characteristics, toxicities, and radiographic disease burden, as determined by central, blinded radiology review, were evaluated. RESULTS: Thirty-nine patients with uveal melanoma were identified, including 34 patients who received 3 mg/kg ipilimumab and 5 who received 10 mg/kg ipilimumab. Immune-related response criteria and modified World Health Organization criteria were used to assess the response rate (RR) and the combined response plus stable disease (SD) rate after 12 weeks, after 23 weeks, and overall (median follow-up, 50.4 weeks [12.6 months]). At week 12, the RR was 2.6%, and the response plus SD rate was 46.%; at week 23, the RR was 2.6%, and the response plus SD rate was 28.2%. There was 1 complete response and 1 late partial response (at 100 weeks after initial SD) for an immune-related RR of 5.1%. Immune-related adverse events were observed in 28 patients (71.8%) and included 7 (17.9%) grade 3 and 4 events. Immune-related adverse events were more frequent in patients who received 10 mg/kg ipilimumab than in those who received 3 mg/kg ipilimumab. The median overall survival from the first dose of ipilimumab was 9.6 months (95% confidence interval, 6.3-13.4 months; range, 1.6-41.6 months). Performance status, lactate dehydrogenase level, and an absolute lymphocyte count ≥ 1000 cells/μL at week 7 were associated significantly with survival. CONCLUSIONS: In this multicenter, retrospective analysis of 4 hospitals in the United States and Europe of patients with uveal melanoma, durable responses to ipilimumab and manageable toxicity were observed

    Multiagent cooperation for solving global optimization problems: an extendible framework with example cooperation strategies

    Get PDF
    This paper proposes the use of multiagent cooperation for solving global optimization problems through the introduction of a new multiagent environment, MANGO. The strength of the environment lays in itsflexible structure based on communicating software agents that attempt to solve a problem cooperatively. This structure allows the execution of a wide range of global optimization algorithms described as a set of interacting operations. At one extreme, MANGO welcomes an individual non-cooperating agent, which is basically the traditional way of solving a global optimization problem. At the other extreme, autonomous agents existing in the environment cooperate as they see fit during run time. We explain the development and communication tools provided in the environment as well as examples of agent realizations and cooperation scenarios. We also show how the multiagent structure is more effective than having a single nonlinear optimization algorithm with randomly selected initial points

    Long-Range Forces of QCD

    Get PDF
    We consider the scattering of two color dipoles (e.g., heavy quarkonium states) at low energy - a QCD analog of Van der Waals interaction. Even though the couplings of the dipoles to the gluon field can be described in perturbation theory, which leads to the potential proportional to (N_c^2-1)/R^{7}, at large distances R the interaction becomes totally non-perturbative. Low-energy QCD theorems are used to evaluate the leading long-distance contribution \sim (N_f^2-1)/(11N_c - 2N_f)^2 R^{-5/2} exp(-2 \mu R) (\mu is the Goldstone boson mass), which is shown to arise from the correlated two-boson exchange. The sum rule which relates the overall strength of the interaction to the energy density of QCD vacuum is derived. Surprisingly, we find that when the size of the dipoles shrinks to zero (the heavy quark limit in the case of quarkonia), the non-perturbative part of the interaction vanishes more slowly than the perturbative part as a consequence of scale anomaly. As an application, we evaluate elastic \pi J/\psi and \pi J/\psi \to \pi \psi' cross sections.Comment: 16pages, 9 eps figures; discussion extended, 2 new references added, to appear in Phys.Rev.

    Resumming the color-octet contribution to e+ e- -> J/psi + X

    Full text link
    Recent observations of the spectrum of J/psi produced in e+ e- collisions at the Upsilon(4S) resonance are in conflict with fixed-order calculations using the Non-Relativistic QCD (NRQCD) effective field theory. One problem is that leading order color-octet mechanisms predict an enhancement of the cross section for J/psi with maximal energy that is not observed in the data. However, in this region of phase space large perturbative corrections (Sudakov logarithms) as well as enhanced nonperturbative effects are important. In this paper we use the newly developed Soft-Collinear Effective Theory (SCET) to systematically include these effects. We find that these corrections significantly broaden the color-octet contribution to the J/psi spectrum. Our calculation employs a one-stage renormalization group evolution rather than the two-stage evolution used in previous SCET calculations. We give a simple argument for why the two methods yield identical results to lowest order in the SCET power counting.Comment: 27 pages, 7 figure

    Perspectives in melanoma: meeting report from the Melanoma Bridge (November 29th-1 December 1st, 2018, Naples, Italy).

    Get PDF
    Diagnosis of melanocytic lesions, correct prognostication of patients, selection of appropriate adjuvant and systemic therapies, and prediction of response to a given therapy remain very real challenges in melanoma. Recent studies have shown that immune checkpoint blockade that represents a forefront in cancer therapy, provide responses but they are not universal. Improved understanding of the tumor microenvironment, tumor immunity and response to therapy has prompted extensive translational and clinical research in melanoma. Development of novel biomarker platforms may help to improve diagnostics and predictive accuracy for selection of patients for specific treatment. There is a growing evidence that genomic and immune features of pre-treatment tumor biopsies may correlate with response in patients with melanoma and other cancers they have yet to be fully characterized and implemented clinically. For example, advancements in sequencing and the understanding of the tumor microenvironment in melanoma have led to the use of genome sequencing and gene expression for development of multi-marker assays that show association with inflammatory state of the tumor and potential to predict response to immunotherapy. As such, melanoma serves as a model system for understanding cancer immunity and patient response to immunotherapy, either alone or in combination with other treatment modalities. Overall, the aim for the translational and clinical studies is to achieve incremental improvements through the development and identification of optimal treatment regimens, which increasingly involve doublet as well as triplet combinations, as well as through development of biomarkers to improve immune response. These and other topics in the management of melanoma were the focus of discussions at the fourth Melanoma Bridge meeting (November 29th-December 1st, 2018, Naples, Italy), which is summarised in this report

    Leptonic and Semileptonic Decays of Charm and Bottom Hadrons

    Get PDF
    We review the experimental measurements and theoretical descriptions of leptonic and semileptonic decays of particles containing a single heavy quark, either charm or bottom. Measurements of bottom semileptonic decays are used to determine the magnitudes of two fundamental parameters of the standard model, the Cabibbo-Kobayashi-Maskawa matrix elements VcbV_{cb} and VubV_{ub}. These parameters are connected with the physics of quark flavor and mass, and they have important implications for the breakdown of CP symmetry. To extract precise values of Vcb|V_{cb}| and Vub|V_{ub}| from measurements, however, requires a good understanding of the decay dynamics. Measurements of both charm and bottom decay distributions provide information on the interactions governing these processes. The underlying weak transition in each case is relatively simple, but the strong interactions that bind the quarks into hadrons introduce complications. We also discuss new theoretical approaches, especially heavy-quark effective theory and lattice QCD, which are providing insights and predictions now being tested by experiment. An international effort at many laboratories will rapidly advance knowledge of this physics during the next decade.Comment: This review article will be published in Reviews of Modern Physics in the fall, 1995. This file contains only the abstract and the table of contents. The full 168-page document including 47 figures is available at http://charm.physics.ucsb.edu/papers/slrevtex.p

    Clones of infected cells arise early in HIV-infected individuals

    Get PDF
    In HIV-infected individuals on long-term antiretroviral therapy (ART), more than 40% of the infected cells are in clones. Although most HIV proviruses present in individuals on long-term ART are defective, including those in clonally expanded cells, there is increasing evidence that clones carrying replication-competent proviruses are common in patients on long-term ART and form part of the HIV reservoir that makes it impossible to cure HIV infection with current ART alone. Given the importance of clonal expansion in HIV persistence, we determined how soon after HIV acquisition infected clones can grow large enough to be detected (clones larger than ca. 1 × 105 cells). We studied 12 individuals sampled in early HIV infection (Fiebig stage III-V/VI) and 5 who were chronically infected. The recently infected individuals were started on ART at or near the time of diagnosis. We isolated more than 6,500 independent integration sites from peripheral blood mononuclear cells before ART was initiated and after 0.5-18 years of suppressive ART. Some infected clones could be detected approximately 4 weeks after HIV infection and some of these clones persisted for years. The results help to explain how the reservoir is established early and persists for years
    corecore