7 research outputs found

    Transcription Factors Encoded on Core and Accessory Chromosomes of Fusarium oxysporum Induce Expression of Effector Genes

    Get PDF
    Proteins secreted by pathogens during host colonization largely determine the outcome of pathogen-host interactions and are commonly called 'effectors'. In fungal plant pathogens, coordinated transcriptional up-regulation of effector genes is a key feature of pathogenesis and effectors are often encoded in genomic regions with distinct repeat content, histone code and rate of evolution. In the tomato pathogen Fusarium oxysporum f. sp. lycopersici (Fol), effector genes reside on one of four accessory chromosomes, known as the 'pathogenicity' chromosome, which can be exchanged between strains through horizontal transfer. The three other accessory chromosomes in the Fol reference strain may also be important for virulence towards tomato. Expression of effector genes in Fol is highly up-regulated upon infection and requires Sge1, a transcription factor encoded on the core genome. Interestingly, the pathogenicity chromosome itself contains 13 predicted transcription factor genes and for all except one, there is a homolog on the core genome. We determined DNA binding specificity for nine transcription factors using oligonucleotide arrays. The binding sites for homologous transcription factors were highly similar, suggesting that extensive neofunctionalization of DNA binding specificity has not occurred. Several DNA binding sites are enriched on accessory chromosomes, and expression of FTF1, its core homolog FTF2 and SGE1 from a constitutive promoter can induce expression of effector genes. The DNA binding sites of only these three transcription factors are enriched among genes up-regulated during infection. We further show that Ftf1, Ftf2 and Sge1 can activate transcription from their binding sites in yeast. RNAseq analysis revealed that in strains with constitutive expression of FTF1, FTF2 or SGE1, expression of a similar set of plant-responsive genes on the pathogenicity chromosome is induced, including most effector genes. We conclude that the Fol pathogenicity chromosome may be partially transcriptionally autonomous, but there are also extensive transcriptional connections between core and accessory chromosomes

    Harnessing Polyhydroxyalkanoates and Pressurized Gyration for Hard and Soft Tissue Engineering

    No full text
    Organ dysfunction is a major cause of morbidity and mortality. Transplantation is typically the only definitive cure, challenged by the lack of sufficient donor organs. Tissue engineering encompasses the development of biomaterial scaffolds to support cell attachment, proliferation, and differentiation, leading to tissue regeneration. For efficient clinical translation, the forming technology utilized must be suitable for mass production. Herein, uniaxial polyhydroxyalkanoate scaffolds manufactured by pressurized gyration, a hybrid scalable spinning technique, are successfully used in bone, nerve, and cardiovascular applications. Chorioallantoic membrane and in vivo studies provided evidence of vascularization, collagen deposition, and cellular invasion for bone tissue engineering. Highly efficient axonal outgrowth was observed in dorsal root ganglion-based 3D ex vivo models. Human induced pluripotent stem cell derived cardiomyocytes exhibited a mature cardiomyocyte phenotype with optimal calcium handling. This study confirms that engineered polyhydroxyalkanoate-based gyrospun fibers provide an exciting and unique toolbox for the development of scalable scaffolds for both hard and soft tissue regeneration

    Database foundations for scalable RDF processing

    No full text
    As more and more data is provided in RDF format, storing huge amounts of RDF data and efficiently processing queries on such data is becoming increasingly important. The first part of the lecture will introduce state-of-the-art techniques for scalably storing and querying RDF with relational systems, including alternatives for storing RDF, efficient index structures, and query optimization techniques. As centralized RDF repositories have limitations in scalability and failure tolerance, decentralized architectures have been proposed. The second part of the lecture will highlight system architectures and strategies for distributed RDF processing. We cover search engines as well as federated query processing, highlight differences to classic federated database systems, and discuss efficient techniques for distributed query processing in general and for RDF data in particular. Extracting knowledge from the Web is an excellent showcase — and potentially one of the biggest challenges — for the scalable management of uncertain data we have seen so far. The third part of the lecture is intended to provide a close-up on current approaches and platforms to make reasoning (e.g., in the form of probabilistic inference) with uncertain RDF data scalable to billions of triples
    corecore