9 research outputs found

    Analyzing Attacks on Cooperative Adaptive Cruise Control (CACC)

    Full text link
    Cooperative Adaptive Cruise Control (CACC) is one of the driving applications of vehicular ad-hoc networks (VANETs) and promises to bring more efficient and faster transportation through cooperative behavior between vehicles. In CACC, vehicles exchange information, which is relied on to partially automate driving; however, this reliance on cooperation requires resilience against attacks and other forms of misbehavior. In this paper, we propose a rigorous attacker model and an evaluation framework for this resilience by quantifying the attack impact, providing the necessary tools to compare controller resilience and attack effectiveness simultaneously. Although there are significant differences between the resilience of the three analyzed controllers, we show that each can be attacked effectively and easily through either jamming or data injection. Our results suggest a combination of misbehavior detection and resilient control algorithms with graceful degradation are necessary ingredients for secure and safe platoons.Comment: 8 pages (author version), 5 Figures, Accepted at 2017 IEEE Vehicular Networking Conference (VNC

    An SDN-based Approach For Defending Against Reflective DDoS Attacks

    Full text link
    Distributed Reflective Denial of Service (DRDoS) attacks are an immanent threat to Internet services. The potential scale of such attacks became apparent in March 2018 when a memcached-based attack peaked at 1.7 Tbps. Novel services built upon UDP increase the need for automated mitigation mechanisms that react to attacks without prior knowledge of the actual application protocols used. With the flexibility that software-defined networks offer, we developed a new approach for defending against DRDoS attacks; it not only protects against arbitrary DRDoS attacks but is also transparent for the attack target and can be used without assistance of the target host operator. The approach provides a robust mitigation system which is protocol-agnostic and effective in the defense against DRDoS attacks

    SDN-Assisted Network-Based Mitigation of Slow HTTP Attacks

    Get PDF
    SDN-Assisted Network-Based Mitigation of Slow HTTP Attack

    VeReMi: a dataset for comparable evaluation of misbehavior detection in VANETs

    No full text
    Vehicular networks are networks of communicating vehicles, a major enabling technology for future cooperative and autonomous driving technologies. The most important messages in these networks are broadcast-authenticated periodic one-hop beacons, used for safety and traffic efficiency applications such as collision avoidance and traffic jam detection. However, broadcast authenticity is not sufficient to guarantee message correctness. The goal of misbehavior detection is to analyze application data and knowledge about physical processes in these cyber-physical systems to detect incorrect messages, enabling local revocation of vehicles transmitting malicious messages. Comparative studies between detection mechanisms are rare due to the lack of a reference dataset. We take the first steps to address this challenge by introducing the Vehicular Reference Misbehavior Dataset (VeReMi) and a discussion of valid metrics for such an assessment. VeReMi is the first public extensible dataset, allowing anyone to reproduce the generation process, as well as contribute attacks and use the data to compare new detection mechanisms against existing ones. The result of our analysis shows that the acceptance range threshold and the simple speed check are complementary mechanisms that detect different attacks. This supports the intuitive notion that fusion can lead to better results with data, and we suggest that future work should focus on effective fusion with VeReMi as an evaluation baseline

    A comparison of TCP congestion control algorithms in 10G networks

    No full text
    The increasing availability of 10G Ethernet network capabilities challenges existing transport layer protocols. As 10G connections gain momentum outside of backbone networks, the choice of appropriate TCP congestion control algorithms becomes even more relevant for networked applications running in environments such as data centers. Therefore, we provide an extensive overview of relevant TCP congestion control algorithms for high-speed environments leveraging 10G. We analyzed and evaluated six TCP variants using a physical network testbed, with a focus on the effects of propagation delay and significant drop rates. The results indicate that of the algorithms compared, BIC is most suitable when no legacy variant is present, CUBIC is suggested otherwise
    corecore