10 research outputs found
Open-Pit Glacier Ice Excavation: Brief Review
Abstract: The authors have compiled information on the fundamentals of open-pit glacier ice excavation from a variety of sources. These sources primarily include U.S. Army technical and scientific studies and peer-reviewed research on glacier ice-excavation activities and the properties and mechanical behavior of ice, but also the relatively few publicly available feasibility studies and environmental impact assessments published by private mining companies. While ice is technically a non-Newtonian fluid over long timescales, the authors suggest that it may be regarded as a low-density and low-strength rock, analogous to coal, for the practical purpose of ice excavation over short timescales. Three distinct ice-excavation techniques are reviewed: blasting, melting, and mechanical excavation, providing a case study of each. The authors summarize the unique advantages and disadvantages of each technique and conclude that an optimal open-ice-pit mining operation would most likely rely primarily on mechanical excavation and secondarily on blasting
Mountain Permafrost Hydrology—A Practical Review Following Studies from the Andes
Climate change is expected to reduce water security in arid mountain regions around the world. Vulnerable water supplies in semi-arid zones, such as the Dry Andes, are projected to be further stressed through changes in air temperature, precipitation patterns, sublimation, and evapotranspiration. Together with glacier recession this will negatively impact water availability. While glacier hydrology has been the focus of scientific research for a long time, relatively little is known about the hydrology of mountain permafrost. In contrast to glaciers, where ice is at the surface and directly affected by atmospheric conditions, the behaviour of permafrost and ground ice is more complex, as other factors, such as variable surficial sediments, vegetation cover, or shallow groundwater flow, influence heat transfer and time scales over which changes occur. The effects of permafrost on water flow paths have been studied in lowland areas, with limited research in the mountains. An understanding of how permafrost degradation and associated melt of ground ice (where present) contribute to streamflow in mountain regions is still lacking. Mountain permafrost, particularly rock glaciers, is often conceptualized as a (frozen) water reservoir; however, rates of permafrost ground ice melt and the contribution to water budgets are rarely considered. Additionally, ground ice and permafrost are not directly visible at the surface; hence, uncertainties related to their three-dimensional extent are orders of magnitude higher than those for glaciers. Ground ice volume within permafrost must always be approximated, further complicating estimations of its response to climate change. This review summarizes current understanding of mountain permafrost hydrology, discusses challenges and limitations, and provides suggestions for areas of future research, using the Dry Andes as a basis
A general theory of rock glacier creep based on inâsitu and remote sensing observations
The ongoing acceleration in rock glacier velocities concurrent with increasing air temperatures, and the widespread onset of rock glacier destabilization have reinforced the interest in rock glacier dynamics and in its coupling to the climate system. Despite the increasing number of studies investigating this phenomenon, our knowledge of both the fundamental mechanisms controlling rock glacier dynamics, and their longâterm behaviour at the regional scale remain limited. We present a general theory to investigate rock glacier dynamics, its spatial patterns and temporal trends at both regional and local scale. To this end, we combine a model to calculate rock glacier thickness with an empirical creep model for iceârich debris, in order to derive the Bulk Creep Factor (BCF), which allows to disentangle the two contributions to the surface velocities from (i) material properties and (ii) geometry. Thereafter, we provide two examples of possible applications of this approach at a regional and local scale
Performance of Highway Embankments in the Arctic Corridor Constructed under Winter Conditions
There are uncertainties related to the mechanical behaviour of embankments where frozen soil is used as fill material and experience natural thawing and settlements during the first thawing season following construction. Fill material of embankments in the Arctic are primarily sourced from locally-available borrow sites which, in certain areas, are predominantly composed of fine till with high ground ice content. Side slope sloughing and fill cracking typically occur due to thawing of the frozen soil and development of localized thaw settlements under the embankment shoulders and side slopes. To assess a frozen fill embankment performance, test sections were constructed along the Inuvik-Tuktoyaktuk Highway in the Northwest Territories, Canada and instrumented with temperature and displacement sensors. One test section was reinforced with layers of wicking woven geotextiles at its side slopes to primarily provide reinforcement against lateral movements and drainage during the thawing season. Field data show that the central and bottom portion of the embankment fill is still frozen while the thaw depth has increased at the toe. This paper presents the analysis and synthesis of the first three-year monitored performance of the embankment test sections following construction.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author
Mountain Permafrost HydrologyâA Practical Review Following Studies from the Andes
Climate change is expected to reduce water security in arid mountain regions around the world. Vulnerable water supplies in semi-arid zones, such as the Dry Andes, are projected to be further stressed through changes in air temperature, precipitation patterns, sublimation, and evapotranspiration. Together with glacier recession this will negatively impact water availability. While glacier hydrology has been the focus of scientific research for a long time, relatively little is known about the hydrology of mountain permafrost. In contrast to glaciers, where ice is at the surface and directly affected by atmospheric conditions, the behaviour of permafrost and ground ice is more complex, as other factors, such as variable surficial sediments, vegetation cover, or shallow groundwater flow, influence heat transfer and time scales over which changes occur. The effects of permafrost on water flow paths have been studied in lowland areas, with limited research in the mountains. An understanding of how permafrost degradation and associated melt of ground ice (where present) contribute to streamflow in mountain regions is still lacking. Mountain permafrost, particularly rock glaciers, is often conceptualized as a (frozen) water reservoir; however, rates of permafrost ground ice melt and the contribution to water budgets are rarely considered. Additionally, ground ice and permafrost are not directly visible at the surface; hence, uncertainties related to their three-dimensional extent are orders of magnitude higher than those for glaciers. Ground ice volume within permafrost must always be approximated, further complicating estimations of its response to climate change. This review summarizes current understanding of mountain permafrost hydrology, discusses challenges and limitations, and provides suggestions for areas of future research, using the Dry Andes as a basis
A general theory of rock glacier creep based on in-situ and remote sensing observations
The ongoing acceleration in rock glacier velocities concurrent with increasing air temperatures, and the widespread onset of rock glacier destabilization have reinforced the interest in rock glacier dynamics and in its coupling to the climate system. Despite the increasing number of studies investigating this phenomenon, our knowledge of both the fundamental mechanisms controlling rock glacier dynamics, and their longâterm behaviour at the regional scale remain limited. We present a general theory to investigate rock glacier dynamics, its spatial patterns and temporal trends at both regional and local scale. To this end, we combine a model to calculate rock glacier thickness with an empirical creep model for iceârich debris, in order to derive the Bulk Creep Factor (BCF), which allows to disentangle the two contributions to the surface velocities from (i) material properties and (ii) geometry. Thereafter, we provide two examples of possible applications of this approach at a regional and local scale
Best Practice for Measuring Permafrost Temperature in Boreholes Based on the Experience in the Swiss Alps
Temperature measurements in boreholes are the most common method allowing the quantitative and direct observation of permafrost evolution in the context of climate change. Existing boreholes and monitoring networks often emerged in a scientific context targeting different objectives and with different setups. A standardized, well-planned and robust instrumentation of boreholes for long-term operation is crucial to deliver comparable, high-quality data for scientific analyses and assessments. However, only a limited number of guidelines are available, particularly for mountain regions. In this paper, we discuss challenges and devise best practice recommendations for permafrost temperature measurements at single sites as well as in a network, based on two decades of experience gained in the framework of the Swiss Permafrost Monitoring Network PERMOS. These recommendations apply to permafrost observations in mountain regions, although many aspects also apply to polar lowlands. The main recommendations are (1) to thoroughly consider criteria for site selection based on the objective of the measurements as well as on preliminary studies and available data, (2) to define the sampling strategy during planification, (3) to engage experienced drilling teams who can cope with inhomogeneous and potentially unstable subsurface material, (4) to select standardized and robust instrumentation with high accuracy temperature sensors and excellent long-term stability when calibrated at 0°C, ideally with double sensors at key depths for validation and substitution of questionable data, (5) to apply standardized maintenance procedures allowing maximum comparability and minimum data processing, (6) to implement regular data control procedures, and (7) to ensure remote data access allowing for rapid trouble shooting and timely reporting. Data gaps can be avoided by timely planning of replacement boreholes. Recommendations for standardized procedures regarding data quality documentation, processing and final publication will follow later.ISSN:2296-646
Permafrost and climate in Europe: Monitoring and modelling thermal, geomorphological and geotechnical responses
We present a review of the changing state of European permafrost within a spatial zone that includes the continuous high latitude arctic permafrost of Svalbard and the discontinuous high altitude mountain permafrost of Iceland, Fennoscandia and the Alps. The paper focuses on methodological developments and data collection over the last decade or so, including research associated with the continent-scale network of instrumented permafrost boreholes established between 1998 and 2001 under the European Union PACE project. Data indicate recent warming trends, with greatest warming at higher latitudes. Equally important are the impacts of shorter-term extreme climatic events, most immediately reflected in changes in active layer thickness. A large number of complex variables, including altitude, topography, insolation and snow distribution, determine permafrost temperatures. The development of regionally calibrated empirical-statistical models, and physically based process-oriented models, is described, and it is shown that, though more complex and data dependent, process-oriented approaches are better suited to estimating transient effects of climate change in complex mountain topography. Mapping and characterisation of permafrost depth and distribution requires integrated multiple geophysical approaches and recent advances are discussed. We report on recent research into ground ice formation, including ice segregation within bedrock and vein ice formation within ice wedge systems. The potential impacts of climate change on rock weathering, permafrost creep, landslides, rock falls, debris flows and slow mass movements are also discussed. Recent engineering responses to the potentially damaging effects of climate warming are outlined, and risk assessment strategies to minimise geological hazards are described. We conclude that forecasting changes in hazard occurrence, magnitude and frequency is likely to depend on process-based modelling, demanding improved understanding of geomorphological process-response systems and their impacts on human activity