6 research outputs found
Hardware in the Loop Real-Time Simulation for Heating Systems: Model Validation and Dynamics Analysis
Heating systems such as heat pumps and combined heat and power cycle systems (CHP) represent a key component in the future smart grid. Their capability to couple the electricity and heat sector promises a massive contribution to the energy transition. Hence, these systems are continuously studied numerically and experimentally to quantify their potential and develop optimal control methods. Although numerical simulations provide time and cost-effective solutions for system development and optimization, they are exposed to several uncertainties. Hardware in the loop (HiL) approaches enable system validation and evaluation under different real-life dynamic constraints and boundary conditions. In this paper, a HiL system of a heat pump testbed is presented. It is used to present two case studies. In the first case, the conventional heat pump testbed operation method is compared to the HiL operation method. Energetic and dynamic analyses are performed to quantify the added value of the HiL and its necessity for dynamics analysis. In the second case, the HiL testbed is used to validate a model of a single family house with a heat pump participating in a local energy market. The energetic analysis indicates a deviation of 2% and 5% for heat generation and electricity consumption of the heat pump model, respectively. The model dynamics emphasized its capability to present the dynamics of a real system with a temporal distortion of 3%
Leiomyosarcoma of the uterus: A clinicopathologic multicenter study of 71 cases
Objective. The aim of this study was to evaluate the behavior of uterine leiomyosarcomas in relation to their clinical and pathologic features and to identify possible prognostic factors
Recommended from our members
NOTCH3 p.Arg1231Cys is markedly enriched in South Asians and associated with stroke
Acknowledgements: Supported by Regeneron Pharmaceuticals, Inc. This research has been conducted using the UK Biobank Resource (project 26041). The authors thank everyone who made this work possible, particularly the UK Biobank team, their funders, the professionals from the member institutions who contributed to and supported this work, and most especially the UK Biobank participants, without whom this research would not be possible. The exome sequencing was funded by the UK Biobank Exome Sequencing Consortium (Bristol Myers Squibb, Regeneron, Biogen, Takeda, Abbvie, Alnylam, AstraZeneca and Pfizer). Ethical approval for the UK Biobank was previously obtained from the North West Center for Research Ethics Committee (11/NW/0382). Disclosure forms provided by the authors are available with the full text of this article.The genetic factors of stroke in South Asians are largely unexplored. Exome-wide sequencing and association analysis (ExWAS) in 75 K Pakistanis identified NM_000435.3(NOTCH3):c.3691 C > T, encoding the missense amino acid substitution p.Arg1231Cys, enriched in South Asians (alternate allele frequency = 0.58% compared to 0.019% in Western Europeans), and associated with subcortical hemorrhagic stroke [odds ratio (OR) = 3.39, 95% confidence interval (CI) = [2.26, 5.10], p = 3.87 × 10−9), and all strokes (OR [CI] = 2.30 [1.77, 3.01], p = 7.79 × 10−10). NOTCH3 p.Arg231Cys was strongly associated with white matter hyperintensity on MRI in United Kingdom Biobank (UKB) participants (effect [95% CI] in SD units = 1.1 [0.61, 1.5], p = 3.0 × 10−6). The variant is attributable for approximately 2.0% of hemorrhagic strokes and 1.1% of all strokes in South Asians. These findings highlight the value of diversity in genetic studies and have major implications for genomic medicine and therapeutic development in South Asian populations