1 research outputs found
Dimensionality, topology, energy, the cosmological constant, and signature change
Using the concept of real tunneling configurations (classical signature
change) and nucleation energy, we explore the consequences of an alternative
minimization procedure for the Euclidean action in multiple-dimensional quantum
cosmology. In both standard Hartle-Hawking type as well as Coleman type
wormhole-based approaches, it is suggested that the action should be minimized
among configurations of equal energy. In a simplified model, allowing for
arbitrary products of spheres as Euclidean solutions, the favoured space-time
dimension is 4, the global topology of spacelike slices being (hence predicting a universe of Kantowski-Sachs type). There is,
however, some freedom for a Kaluza-Klein scenario, in which case the observed
spacelike slices are . In this case, the internal space is a product
of two-spheres, and the total space-time dimension is 6, 8, 10 or 12.Comment: 34 pages, LaTeX, no figure