302 research outputs found
Recommended from our members
Tree species’ tolerance to water stress, salinity and fire
According to climate change predictions, water availability might change dramatically in Europe and adjacent regions. This change will undoubtedly have an adverse effect on existing tree species and affect their ability to cope with a lack or an excess of water, changes in annual precipitation patterns, soil salinity and fire disturbance. The following chapter will describe tree species and proven-ances used in European forestry practice which are the most suitable to deal with water stress, salinity and fire. Each subchapter starts with a brief description of each of the stress factors and discusses the predictions of the likelihood of their occurrence in the near future according to the climate change scenarios. Tree spe-cies and their genotypes able to cope with particular stress factor, together with indication of their use by forest managers are then introduced in greater detail
Recommended from our members
The role of closed ecological systems in carbon cycle modelling
Acquiring a mechanistic understanding of the role of the biotic feedbacks on the links between atmospheric CO2 concentrations and temperature is essential for trustworthy climate predictions. Currently, computer based simulations are the only available tool to estimate the global impact of the biotic feedbacks on future atmospheric CO2 and temperatures. Here we propose an alternative and complementary approaches by using materially closed and energetically open analogue/physical models of the carbon cycle. We argue that there is potential in using a materially closed approach to improve our understanding of the magnitude and sign of many biotic feedbacks, and that recent technological advance make this feasible. We also suggest how such systems could be designed and discuss the advantages and limitations of establishing physical models of the global carbon cycle
Context Based Visual Content Verification
In this paper the intermediary visual content verification method based on
multi-level co-occurrences is studied. The co-occurrence statistics are in
general used to determine relational properties between objects based on
information collected from data. As such these measures are heavily subject to
relative number of occurrences and give only limited amount of accuracy when
predicting objects in real world. In order to improve the accuracy of this
method in the verification task, we include the context information such as
location, type of environment etc. In order to train our model we provide new
annotated dataset the Advanced Attribute VOC (AAVOC) that contains additional
properties of the image. We show that the usage of context greatly improve the
accuracy of verification with up to 16% improvement.Comment: 6 pages, 6 Figures, Published in Proceedings of the Information and
Digital Technology Conference, 201
Recommended from our members
Effect of soil waterlogging on below-ground biomass allometric relations in Norway spruce
An increasing importance is assigned to the estimation and verification of carbon stocks in forests. Forestry practice has several long-established and reliable methods for the assessment of aboveground biomass; however we still miss accurate predictors of belowground biomass. A major windthrow event exposing the coarse root systems of Norway spruce trees allowed us to assess the effects of contrasting soil stone and water content on belowground allocation. Increasing stone content decreases root/shoot ratio, while soil waterlogging leads to an increase in this ratio. We constructed allometric relationships for belowground biomass prediction and were able to show that only soil waterlogging significantly impacts model parameters. We showed that diameter at breast height is a reliable predictor of belowground biomass and, once site-specific parameters have been developed, it is possible to accurately estimate belowground biomass in Norway spruce
Minimization of Quantum Circuits using Quantum Operator Forms
In this paper we present a method for minimizing reversible quantum circuits
using the Quantum Operator Form (QOF); a new representation of quantum circuit
and of quantum-realized reversible circuits based on the CNOT, CV and
CV quantum gates. The proposed form is a quantum extension to the
well known Reed-Muller but unlike the Reed-Muller form, the QOF allows the
usage of different quantum gates. Therefore QOF permits minimization of quantum
circuits by using properties of different gates than only the multi-control
Toffoli gates. We introduce a set of minimization rules and a pseudo-algorithm
that can be used to design circuits with the CNOT, CV and CV quantum
gates. We show how the QOF can be used to minimize reversible quantum circuits
and how the rules allow to obtain exact realizations using the above mentioned
quantum gates.Comment: 11 pages, 14 figures, Proceedings of the ULSI Workshop 2012 (@ISMVL
2012
Recommended from our members
Biomass partitioning and growth efficiency in four naturally regenerated forest tree species
Current forest growth models and yield tables are almost exclusively based on data from mature trees, reducing their applicability to young and developing stands. To address this gap, young European beech, sessile oak, Scots pine and Norway spruce trees approximately 0 to 10 years old were destructively sampled in a range of naturally regenerated forest stands in Central Europe. Diameter at base and height were first measured in situ for up to 175 individuals per species. Subsequently, the trees were excavated and dry biomass of foliage, branches, stems and roots was measured. Allometric relations were then used to calculate biomass allocation coefficients (BAC) and growth efficiency (GE) patterns in young trees. We found large differences in BAC and GE between broadleaves and conifers, but also between species within these categories. Both BAC and GE are strongly age-specific in young trees, their rapidly changing values reflecting different growth strategies in the earliest stages of growth. We show that linear relationships describing biomass allocation in older trees are not applicable in young trees. To accurately predict forest biomass and carbon stocks, forest growth models need to include species and age specific parameters of biomass allocation patterns
- …