458 research outputs found
Thermodynamically modulated partially double-stranded linear DNA probe design for homogeneous real-time PCR
Real-time PCR assays have recently been developed for diagnostic and research purposes. Signal generation in real-time PCR is achieved with probe designs that usually depend on exonuclease activity of DNA polymerase (e.g. TaqMan probe) or oligonucleotide hybridization (e.g. molecular beacon). Probe design often needs to be specifically tailored either to tolerate or to differentiate between sequence variations. The conventional probe technologies offer limited flexibility to meet these diverse requirements. Here, we introduce a novel partially double-stranded linear DNA probe design. It consists of a hybridization probe 5′-labeled with a fluorophore and a shorter quencher oligo of complementary sequence 3′-labeled with a quencher. Fluorescent signal is generated when the hybridization probe preferentially binds to amplified targets during PCR. This novel class of probe can be thermodynamically modulated by adjusting (i) the length of hybridization probe, (ii) the length of quencher oligo, (iii) the molar ratio between the two strands and (iv) signal detection temperature. As a result, pre-amplification signal, signal gain and the extent of mismatch discrimination can be reliably controlled and optimized. The applicability of this design strategy was demonstrated in the Abbott RealTime HIV-1 assay
Characterization of antibodies elicited by XMRV infection and development of immunoassays useful for epidemiologic studies
<p>Abstract</p> <p>Background</p> <p>Xenotropic Murine Leukemia Virus-related Virus (XMRV) is a human gammaretrovirus recently identified in prostate cancer tissue and in lymphocytes of patients with chronic fatigue syndrome. To establish the etiologic role of XMRV infection in human disease requires large scale epidemiologic studies. Development of assays to detect XMRV-specific antibodies would greatly facilitate such studies. However, the nature and kinetics of the antibody response to XMRV infection have yet to be determined.</p> <p>Results</p> <p>Three rhesus macaques were infected with XMRV to determine the dynamics of the antibody responses elicited by infection with XMRV. All macaques developed antibodies to XMRV during the second week of infection, and the predominant responses were to the envelope protein gp70, transmembrane protein p15E, and capsid protein p30. In general, antibody responses to gp70 and p15E appeared early with higher titers than to p30, especially in the early period of seroconversion. Antibodies to gp70, p15E and p30 persisted to 158 days and were substantially boosted by re-infection, thus, were identified as useful serologic markers. Three high-throughput prototype assays were developed using recombinant proteins to detect antibodies to these viral proteins. Both gp70 and p15E prototype assays demonstrated 100% sensitivity by detecting all Western blot (WB) positive serial bleeds from the XMRV-infected macaques and good specificity (99.5-99.9%) with blood donors. Seroconversion sensitivity and specificity of the p30 prototype assay were 92% and 99.4% respectively.</p> <p>Conclusions</p> <p>This study provides the first demonstration of seroconversion patterns elicited by XMRV infection. The nature and kinetics of antibody responses to XMRV in primates were fully characterized. Moreover, key serologic markers useful for detection of XMRV infection were identified. Three prototype immunoassays were developed to detect XMRV-specific antibodies. These assays demonstrated good sensitivity and specificity; thus, they will facilitate large scale epidemiologic studies of XMRV infection in humans.</p
The predictive value of G8 and the Cancer and aging research group chemotherapy toxicity tool in treatment-related toxicity in older Chinese patients with cancer
Introduction: Older patients experience a higher risk of treatment-related toxicity (TRT). The G8 screening tool was developed to separate cancer older patients fit to receive standard treatment from those who are frail and experiencing functional decline due to reduced organ function and multiple comorbidities. The Cancer and Aging Research Group chemotherapy toxicity tool (CARG-tt) questionnaire was developed to predict chemotherapy toxicity in geriatric patients. This prospective observational study evaluated the performance of G8 and CARG-tt in predicting severe TRT in older Chinese cancer patients. Methods: Chinese patients aged ≥65 with a diagnosis of solid malignancy and scheduled to receive anti-cancer treatment (chemotherapy or targeted therapy) were enrolled from March 2016 to July 2017 at the Department of Clinical Oncology at Queen Mary Hospital in Hong Kong. All patients completed the G8 and CARG-tt screening and pre-treatment assessments before starting treatment. Patients were monitored for any severe TRT, which was defined by grades 3–5 using the National Cancer Institute's Common Terminology Criteria for Adverse Events v4.03, treatment discontinuation, or unexpected hospitalization from starting to 30 days after treatment. Results: A total of 259 patients (male: 154, 59.5%; median age: 73.4, age range: 65–93) were enrolled in the study. Two hundred and ten (81.1%) patients received chemotherapy while the rest (n = 49, 18.9%) received targeted therapy. Overall, 146 patients (56.8%) experienced severe TRT. The mean G8 score was 12.4 (SD: 2.8). The G8 score had a significant association with unexpected admission (cutoff: 14, 41.3% vs. 26.5%, p = 0.03) but not significant in other types of TRTs. The mean CARG-tt score was 7.67 (SD: 3.7); it was not associated with severe TRTs. Conclusions: The G8 and CARG-tt demonstrated a weak prediction of severe TRT in older Chinese cancer patients. Future studies need to develop predictive tools for TRT in patients receiving novel antineoplastic therapies, with a focus on subgroup analysis for different populations
The photometric observation of the quasi-simultaneous mutual eclipse and occultation between Europa and Ganymede on 22 August 2021
Mutual events (MEs) are eclipses and occultations among planetary natural
satellites. Most of the time, eclipses and occultations occur separately.
However, the same satellite pair will exhibit an eclipse and an occultation
quasi-simultaneously under particular orbital configurations. This kind of rare
event is termed as a quasi-simultaneous mutual event (QSME). During the 2021
campaign of mutual events of jovian satellites, we observed a QSME between
Europa and Ganymede. The present study aims to describe and study the event in
detail. We observed the QSME with a CCD camera attached to a 300-mm telescope
at the Hong Kong Space Museum Sai Kung iObservatory. We obtained the combined
flux of Europa and Ganymede from aperture photometry. A geometric model was
developed to explain the light curve observed. Our results are compared with
theoretical predictions (O-C). We found that our simple geometric model can
explain the QSME fairly accurately, and the QSME light curve is a superposition
of the light curves of an eclipse and an occultation. Notably, the observed
flux drops are within 2.6% of the theoretical predictions. The size of the
event central time O-Cs ranges from -14.4 to 43.2 s. Both O-Cs of flux drop and
timing are comparable to other studies adopting more complicated models. Given
the event rarity, model simplicity and accuracy, we encourage more observations
and analysis on QSMEs to improve Solar System ephemerides.Comment: 23 pages, 5 appendixes, 16 figures, 7 table
Soluble suppression of tumorigenicity 2 (sST2) for predicting disease severity or mortality outcomes in cardiovascular diseases: A systematic review and meta-analysis
Objectives: Soluble suppression of tumorigenicity 2 (sST2) is a member of the interleukin-1 receptor family. It is raised in various cardiovascular diseases, but its value in predicting disease severity or mortality outcomes has been controversial. Therefore, we conducted a systematic review and meta-analysis to determine whether sST2 levels differed between survivors and non-survivors of patients with cardiovascular diseases, and whether elevated sST2 levels correlated with adverse outcomes.
Methods: PubMed and Embase were searched until 23rd June 2021 for studies that evaluated the relationship between sST2 levels and cardiovascular disease severity or mortality.
Results: A total of 707 entries were retrieved from both databases, of which 14 studies were included in the final meta-analysis. In acute heart failure, sST2 levels did not differ between survivors and non-survivors (mean difference [MD]: 24.2 ± 13.0 ng/ml; P = 0.06; I2: 95%). Elevated sST2 levels tend to be associated with increased mortality risk (hazard ratio [HR]: 1.12, 95 %CI: 0.99–1.27, P = 0.07; I2: 88%). In chronic heart failure, sST2 levels were higher in non-survivors than in survivors (MD: 0.19 ± 0.04 ng/ml; P = 0.001; I2: 0%) and elevated levels were associated with increased mortality risk (HR: 1.64, 95% CI: 1.27–2.12, P < 0.001; I2: 82%). sST2 levels were significantly higher in severe disease compared to less severe disease (MD: 1.56 ± 0.46 ng/ml; P = 0.001; I2: 98%). Finally, in stable coronary artery disease, sST2 levels were higher in non-survivors than survivors (MD: 3.0 ± 1.1 ng/ml; P = 0.005; I2: 80%) and elevated levels were significantly associated with increased mortality risk (HR: 1.32, 95% CI: 1.04–1.68, P < 0.05; I2: 57%).
Conclusions: sST2 significantly predicts disease severity and mortality in cardiovascular disease and is a good predictor of mortality in patients with stable coronary artery disease and chronic heart failure
Absence of XMRV and Closely Related Viruses in Primary Prostate Cancer Tissues Used to Derive the XMRV-Infected Cell Line 22Rv1
The 22Rv1 cell line is widely used for prostate cancer research and other studies throughout the world. These cells were established from a human prostate tumor, CWR22, that was serially passaged in nude mice and selected for androgen independence. The 22Rv1 cells are known to produce high titers of xenotropic murine leukemia virus-related virus (XMRV). Recent studies suggested that XMRV was inadvertently created in the 1990's when two murine leukemia virus (MLV) genomes (pre-XMRV1 and pre-XMRV-2) recombined during passaging of the CWR22 tumor in mice. The conclusion that XMRV originated from mice and not the patient was based partly on the failure to detect XMRV in early CWR22 xenografts. While that deduction is certainly justified, we examined the possibility that a closely related virus could have been present in primary tumor tissue. Here we report that we have located the original prostate tumor tissue excised from patient CWR22 and have assayed the corresponding DNA by PCR and the tissue sections by fluorescence in situ hybridization for the presence of XMRV or a similar virus. The primary tumor tissues lacked mouse DNA as determined by PCR for intracisternal A type particle DNA, thus avoiding one of the limitations of studying xenografts. We show that neither XMRV nor a closely related virus was present in primary prostate tissue of patient CWR22. Our findings confirm and reinforce the conclusion that XMRV is a recombinant laboratory-generated mouse virus that is highly adapted for human prostate cancer cells
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
Azimuthal anisotropy of charged particles at high transverse momenta in PbPb collisions at sqrt(s[NN]) = 2.76 TeV
The azimuthal anisotropy of charged particles in PbPb collisions at
nucleon-nucleon center-of-mass energy of 2.76 TeV is measured with the CMS
detector at the LHC over an extended transverse momentum (pt) range up to
approximately 60 GeV. The data cover both the low-pt region associated with
hydrodynamic flow phenomena and the high-pt region where the anisotropies may
reflect the path-length dependence of parton energy loss in the created medium.
The anisotropy parameter (v2) of the particles is extracted by correlating
charged tracks with respect to the event-plane reconstructed by using the
energy deposited in forward-angle calorimeters. For the six bins of collision
centrality studied, spanning the range of 0-60% most-central events, the
observed v2 values are found to first increase with pt, reaching a maximum
around pt = 3 GeV, and then to gradually decrease to almost zero, with the
decline persisting up to at least pt = 40 GeV over the full centrality range
measured.Comment: Replaced with published version. Added journal reference and DO
Search for new physics with same-sign isolated dilepton events with jets and missing transverse energy
A search for new physics is performed in events with two same-sign isolated
leptons, hadronic jets, and missing transverse energy in the final state. The
analysis is based on a data sample corresponding to an integrated luminosity of
4.98 inverse femtobarns produced in pp collisions at a center-of-mass energy of
7 TeV collected by the CMS experiment at the LHC. This constitutes a factor of
140 increase in integrated luminosity over previously published results. The
observed yields agree with the standard model predictions and thus no evidence
for new physics is found. The observations are used to set upper limits on
possible new physics contributions and to constrain supersymmetric models. To
facilitate the interpretation of the data in a broader range of new physics
scenarios, information on the event selection, detector response, and
efficiencies is provided.Comment: Published in Physical Review Letter
- …