53 research outputs found

    Scribble Hides Class: Promoting Scribble-Based Weakly-Supervised Semantic Segmentation with Its Class Label

    Full text link
    Scribble-based weakly-supervised semantic segmentation using sparse scribble supervision is gaining traction as it reduces annotation costs when compared to fully annotated alternatives. Existing methods primarily generate pseudo-labels by diffusing labeled pixels to unlabeled ones with local cues for supervision. However, this diffusion process fails to exploit global semantics and class-specific cues, which are important for semantic segmentation. In this study, we propose a class-driven scribble promotion network, which utilizes both scribble annotations and pseudo-labels informed by image-level classes and global semantics for supervision. Directly adopting pseudo-labels might misguide the segmentation model, thus we design a localization rectification module to correct foreground representations in the feature space. To further combine the advantages of both supervisions, we also introduce a distance entropy loss for uncertainty reduction, which adapts per-pixel confidence weights according to the reliable region determined by the scribble and pseudo-label's boundary. Experiments on the ScribbleSup dataset with different qualities of scribble annotations outperform all the previous methods, demonstrating the superiority and robustness of our method.The code is available at https://github.com/Zxl19990529/Class-driven-Scribble-Promotion-Network

    Phenotypic and Physiological Characterization of the Epibiotic Interaction Between TM7x and Its Basibiont Actinomyces

    Get PDF
    Despite many examples of obligate epibiotic symbiosis (one organism living on the surface of another) in nature, such an interaction has rarely been observed between two bacteria. Here, we further characterize a newly reported interaction between a human oral obligate parasitic bacterium TM7x (cultivated member of Candidatus Saccharimonas formerly Candidate Phylum TM7), and its basibiont Actinomyces odontolyticus species (XH001), providing a model system to study epiparasitic symbiosis in the domain Bacteria. Detailed microscopic studies indicate that both partners display extensive morphological changes during symbiotic growth. XH001 cells manifested as short rods in monoculture, but displayed elongated and hyphal morphology when physically associated with TM7x. Interestingly, these dramatic morphological changes in XH001 were also induced in oxygen-depleted conditions, even in the absence of TM7x. Targeted quantitative real-time PCR (qRT-PCR) analyses revealed that both the physical association with TM7x as well as oxygen depletion triggered up-regulation of key stress response genes in XH001, and in combination, these conditions act in an additive manner. TM7x and XH001 co-exist with relatively uniform cell morphologies under nutrient-replete conditions. However, upon nutrient depletion, TM7x-associated XH001 displayed a variety of cell morphologies, including swollen cell body, clubbed-ends, and even cell lysis, and a large portion of TM7x cells transformed from ultrasmall cocci into elongated cells. Our study demonstrates a highly dynamic interaction between epibiont TM7x and its basibiont XH001 in response to physical association or environmental cues such as oxygen level and nutritional status, as reflected by their morphological and physiological changes during symbiotic growth

    Research Progress on the Application and Mechanism of Medium-Chain Fatty Acids in Adjuvant Therapy of Diseases

    Get PDF
    As people’s consumption levels and health awareness have risen, the consumer demand for functional foods is steadily increasing. Medium-chain fatty acids (MCFAs), an important class of dietary fatty acids, have been regarded as high-value functional foods due to their unique transportation system and the fact that they can be metabolized rapidly in the body while producing high energy. Beginning with an overview of the types and structures of MCFAs, this paper goes on to elaborate the metabolic pathway of MCFAs in the human body and then summarize recent research on MCFAs in the adjuvant treatment of different diseases. This article focuses on the positive role of MCFAs in the adjuvant treatment of Alzheimer’s disease, epilepsy, cancer, diabetes, obesity, and other diseases, and expounds their action mechanism. Finally, an outlook on the future development of MCFAs is given. Overall, this review provides a theoretical basis for promoting the application of MCFAs in the fields of food and medicine

    Quorum Sensing Modulates the Epibiotic-Parasitic Relationship Between Actinomyces odontolyticus and Its Saccharibacteria epibiont, a Nanosynbacter lyticus Strain, TM7x

    Get PDF
    The ultra-small, obligate parasitic epibiont, TM7x, the first and only current member of the long-elusive Saccharibacteria (formerly the TM7 phylum) phylum to be cultivated, was isolated in co-culture with its bacterial host, Actinomyces odontolyticus subspecies actinosynbacter, XH001. Initial phenotypic characterization of the TM7x-associated XH001 co-culture revealed enhanced biofilm formation in the presence of TM7x compared to XH001 as monoculture. Genomic analysis and previously published transcriptomic profiling of XH001 also revealed the presence of a putative AI-2 quorum sensing (QS) operon, which was highly upregulated upon association of TM7x with XH001. This analysis revealed that the most highly induced gene in XH001 was an lsrB ortholog, which encodes a putative periplasmic binding protein for the auto inducer (AI)-2 QS signaling molecule. Further genomic analyses suggested the lsrB operon in XH001 is a putative hybrid AI-2/ribose transport operon as well as the existence of a luxS ortholog, which encodes the AI-2 synthase. In this study, the potential role of AI-2 QS in the epibiotic-parasitic relationship between XH001 and TM7x in the context of biofilm formation was investigated. A genetic system for XH001 was developed to generate lsrB and luxS gene deletion mutants in XH001. Phenotypic characterization demonstrated that deletion mutations in either lsrB or luxS did not affect XH001’s growth dynamic, mono-species biofilm formation capability, nor its ability to associate with TM7x. TM7x association with XH001 induced lsrB gene expression in a luxS-dependent manner. Intriguingly, unlike wild type XH001, which displayed significantly increased biofilm formation upon establishing the epibiotic-parasitic relationship with TM7x, XH001ΔlsrB, and XH001ΔluxS mutants failed to achieve enhanced biofilm formation when associated with TM7x. In conclusion, we demonstrated a significant role for AI-2 QS in modulating dual-species biofilm formation when XH001 and TM7x establish their epibiotic-parasitic relationship

    A Novel Intravital Method to Evaluate Cerebral Vasospasm in Rat Models of Subarachnoid Hemorrhage: A Study with Synchrotron Radiation Angiography

    Get PDF
    Precise in vivo evaluation of cerebral vasospasm caused by subarachnoid hemorrhage has remained a critical but unsolved issue in experimental small animal models. In this study, we used synchrotron radiation angiography to study the vasospasm of anterior circulation arteries in two subarachnoid hemorrhage models in rats. Synchrotron radiation angiography, laser Doppler flowmetry-cerebral blood flow measurement, [125I]N-isopropyl-p-iodoamphetamine cerebral blood flow measurement and terminal examinations were applied to evaluate the changes of anterior circulation arteries in two subarachnoid hemorrhage models made by blood injection into cisterna magna and prechiasmatic cistern. Using synchrotron radiation angiography technique, we detected cerebral vasospasm in subarachnoid hemorrhage rats compared to the controls (p<0.05). We also identified two interesting findings: 1) both middle cerebral artery and anterior cerebral artery shrunk the most at day 3 after subarachnoid hemorrhage; 2) the diameter of anterior cerebral artery in the prechiasmatic cistern injection group was smaller than that in the cisterna magna injection group (p<0.05), but not for middle cerebral artery. We concluded that synchrotron radiation angiography provided a novel technique, which could directly evaluate cerebral vasospasm in small animal experimental subarachnoid hemorrhage models. The courses of vasospasm in these two injection models are similar; however, the model produced by prechiasmatic cistern injection is more suitable for study of anterior circulation vasospasm

    A Panoramic View of 3G Data/Control-Plane Traffic: Mobile Device Perspective

    Full text link
    Part 6: Network MeasurementInternational audienceUsers can access the Internet via 3G/4G cellular data networks using various types of user devices (e.g., smartphones, tablets, datacards). We conduct a detailed measurement study on the impact of different device types on the data/control-plane performance of a commercial, city-wide 3G cellular data network in China. We present a methodology that correlates different data/control-plane datasets collected at different points in the network core, and identify more than 60K devices of different types per day on average. For the devices we identify, we investigate how their commonly used Internet applications and internal heartbeat mechanisms lead to distinct data/control-plane behaviors. For example, we observe that datacard devices contribute a large volume of IP traffic in the data plane, while smartphones introduce significant resource overhead in the signaling control plane. Our measurement study provides insights for network operators to strategize pricing and resource allocation for the data/control planes of their cellular data networks with regard to the market penetrations of various device types

    Scribble Hides Class: Promoting Scribble-Based Weakly-Supervised Semantic Segmentation with Its Class Label

    Full text link
    Scribble-based weakly-supervised semantic segmentation using sparse scribble supervision is gaining traction as it reduces annotation costs when compared to fully annotated alternatives. Existing methods primarily generate pseudo-labels by diffusing labeled pixels to unlabeled ones with local cues for supervision. However, this diffusion process fails to exploit global semantics and class-specific cues, which are important for semantic segmentation. In this study, we propose a class-driven scribble promotion network, which utilizes both scribble annotations and pseudo-labels informed by image-level classes and global semantics for supervision. Directly adopting pseudo-labels might misguide the segmentation model, thus we design a localization rectification module to correct foreground representations in the feature space. To further combine the advantages of both supervisions, we also introduce a distance entropy loss for uncertainty reduction, which adapts per-pixel confidence weights according to the reliable region determined by the scribble and pseudo-label's boundary. Experiments on the ScribbleSup dataset with different qualities of scribble annotations outperform all the previous methods, demonstrating the superiority and robustness of our method. The code is available at https://github.com/Zxl19990529/Class-driven-Scribble-Promotion-Network

    Evaluations on the Consequences of Fire Suppression and the Ecological Effects of Fuel Treatment Scenarios in a Boreal Forest of the Great Xing’an Mountains, China

    Full text link
    With global warming, catastrophic forest fires have frequently occurred in recent years, posing a major threat to forest resources and people. How to reduce forest fire risk is a hot topic in forest management. Concerns regarding fire suppression and forest fuel treatments are rising. Few studies have evaluated the ecological effects of fuel treatments. In this study, we used the LANDIS PRO model to simulate the consequences of fire suppression and the ecological effects of fuel treatments in a boreal forest of the Great Xing’an Mountains, China. Four simulation scenarios were designed, focusing on whether to conduct fuel treatments or not under two fire-control policies (current fire suppression policy and no fire suppression policy). Each scenario contains nine fuel treatment plans based on the combinations of different treatment methods (coarse woody debris reduction, prescribed burning, coarse woody debris reduction plus prescribed burning), treatment frequency (low, medium, and high), and treatment area (large, medium, and small). The ecological effects of the fuel treatments were evaluated according to the changes in fire regimes, species succession, and forest landscape patterns to find a forest fuel management plan that is suitable for the Great Xing’an Mountains. The results showed that long-term fire suppression increases fuel loads and the probability of high-intensity forest fires. The nine fuel management plans did not show significant differences in terms of species succession and forest landscape patterns while lowering forest fire intensity, and none of them were able to restore historical vegetation structure and composition. Our results consolidate the foundation for the practical performance of forest fuel treatments in fire-prone forest landscapes. We suggest a suitable fuel treatment plan for the Great Xing’an Mountains, with a low treatment frequency (20 years), large treatment area (10%), and coarse woody debris reduction, plus the prescribed burning measure

    Evaluation of Controlled Release Urea on the Dynamics of Nitrate, Ammonium, and Its Nitrogen Release in Black Soils of Northeast China

    Full text link
    Controlled release urea (CRU) is considered to enhance crop yields while alleviating negative environmental problems caused by the hazardous gas emissions that are associated with high concentrations of ammonium (NH4+) and nitrate (NO3−) in black soils. Short-term effects of sulfur-coated urea (SCU) and polyurethane-coated urea (PCU), compared with conventional urea, on NO3− and NH4+ in black soils were studied through the buried bag experiment conducted in an artificial climate chamber. We also investigated nitrogen (N) release kinetics of CRU and correlations between the cumulative N release rate and concentrations of NO3− and NH4+. CRU can reduce concentrations of NO3− and NH4+, and PCU was more effective in maintaining lower soil NO3−/NH4+ ratios than SCU and U. Parabolic equation could describe the kinetics of NO3− and NH4+ treated with PCU. The Elovich equation could describe the kinetics of NO3− and NH4+ treated with SCU. The binary linear regression model was established to predict N release from PCU because of significant correlations between the cumulative N release rate and concentrations of NO3− and NH4+. These results provided a methodology and data support for characterizing and predicting the N release from PCU in black soils
    • …
    corecore