5 research outputs found

    Selenium Analysis and Speciation in Dietary Supplements Based on Next-Generation Selenium Ingredients

    No full text
    Selenium is essential for humans and the deficit of Se requires supplementation. In addition to traditional forms such as Se salts, amino acids, or selenium-enriched yeast supplements, next-generation selenium supplements, with lower risk for excess supplementation, are emerging. These are based on selenium forms with lower toxicity, higher bioavailability, and controlled release, such as zerovalent selenium nanoparticles (SeNPs) and selenized polysaccharides (SPs). This article aims to focus on the existing analytical systems for the next-generation Se dietary supplement, providing, at the same time, an overview of the analytical methods available for the traditional forms. The next-generation dietary supplements are evaluated in comparison with the conventional/traditional ones, as well as the analysis and speciation methods that are suitable to reveal which Se forms and species are present in a dietary supplement. Knowledge gaps and further research potential in this field are highlighted. The review indicates that the methods of analysis of next-generation selenium supplements should include a step related to chemical species separation. Such a step would allow a proper characterization of the selenium forms/species, including molecular mass/dimension, and substantiates the marketing claims related to the main advantages of these new selenium ingredients

    <i>Cladosporium</i> sp. Isolate as Fungal Plant Growth Promoting Agent

    No full text
    Cladosporium species are active in protecting plants against different biotic and abiotic stresses. Since these species produced a wide range of secondary metabolites responsible for the adaptation to new habitats, plant health and performance, they are of great interest, especially for biostimulants in agriculture. Cladosporium sp. produces protein hydrolysates (PHs), a class of biostimulants, by cultivation on medium with keratin wastes (feathers) as carbon and energy sources. The aim of this study was to select a Cladosporium isolate with potential to be used as plant growth promoting agent. The characteristics of Cladosporium isolates as plants biostimulants were evaluated through several tests, such as: antagonism versus plants pathogens, effect on plant growth of secreted volatiles produced by isolates, secretion of hydrolytic enzymes, production of 3-indole acetic acid, zinc and phosphorous solubilization, capacity to promote tomato seedlings growth (pot experiments). Cladosporium isolate T2 presented positive results to all tests. Encouraging results were obtained treating tomato seedlings with PHs from isolate Cladosporium T2 cultured on medium supplemented with 1% (w/w) chicken feathers, for which growth parameters, such as stem weight, stem height, and root weight were significantly higher by 65%, 32%, and 55%, respectively, compared to those treated with water

    Spectroscopic Analyses Highlight Plant Biostimulant Effects of Baker’s Yeast Vinasse and Selenium on Cabbage through Foliar Fertilization

    No full text
    The main aim of this study is to find relevant analytic fingerprints for plants’ structural characterization using spectroscopic techniques and thermogravimetric analyses (TGAs) as alternative methods, particularized on cabbage treated with selenium–baker’s yeast vinasse formulation (Se-VF) included in a foliar fertilizer formula. The hypothesis investigated is that Se-VF will induce significant structural changes compared with the control, analytically confirming the biofortification of selenium-enriched cabbage as a nutritive vegetable, and particularly the plant biostimulant effects of the applied Se-VF formulation on cabbage grown in the field. The TGA evidenced a structural transformation of the molecular building blocks in the treated cabbage leaves. The ash residues increased after treatment, suggesting increased mineral accumulation in leaves. X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) evidenced a pectin–Iα-cellulose structure of cabbage that correlated with each other in terms of leaf crystallinity. FTIR analysis suggested the accumulation of unesterified pectin and possibly (seleno) glucosinolates and an increased network of hydrogen bonds. The treatment with Se-VF formulation induced a significant increase in the soluble fibers of the inner leaves, accompanied by a decrease in the insoluble fibers. The ratio of soluble/insoluble fibers correlated with the crystallinity determined by XRD and with the FTIR data. The employed analytic techniques can find practical applications as fast methods in studies of the effects of new agrotechnical practices, while in our particular case study, they revealed effects specific to plant biostimulants of the Se-VF formulation treatment: enhanced mineral utilization and improved quality traits

    Sustainable Recovery of Anthocyanins and Other Polyphenols from Red Cabbage Byproducts

    No full text
    The objective of this work was to develop a sustainable process for the extraction of anthocyanins from red cabbage byproducts using, for the first time, apple vinegar in extractant composition. Our results showed that the mixture 50% (v/v) ethanol–water, acidified with apple vinegar, used in the proportion of 25 g of red cabbage by-products per 100 mL of solvent, was the best solvent for the preparation of an anthocyanin extract with good stability for food applications. The chemical characterization of this extract was performed by FTIR, UV-VIS, HPLC-DAD, and ICP-OES. The stability was evaluated by determining the dynamics of the total polyphenol content (TPC) and the total monomeric anthocyanin pigment content (TAC) during storage. On the basis of the statistical method for analysis of variance (ANOVA), the standard deviation between subsamples and the repeatability standard deviation were determined. The detection limit of the stability test of TPC was 3.68 mg GAE/100 g DW and that of TAC was 0.79 mg Cyd-3-Glu/100 g DW. The red cabbage extract has high TPC and TAC, good stability, and significant application potential. The extracted residues, depleted of anthocyanins and polyphenols with potential allelopathic risks, fulfill the requirements for a fertilizing product and could be used for soil treatment
    corecore