49 research outputs found

    Testing Lorentz Invariance Using an Odd-Parity Asymmetric Optical Resonator

    Full text link
    We present the first experimental test of Lorentz invariance using the frequency difference between counter-propagating modes in an asymmetric odd-parity optical resonator. This type of test is ∼104\sim10^{4} more sensitive to odd-parity and isotropic (scalar) violations of Lorentz invariance than equivalent conventional even-parity experiments due to the asymmetry of the optical resonator. The disadvantages of odd parity resonators have been negated by the use of counter-propagating modes, delivering a high level of immunity to environmental fluctuations. With a non-rotating experiment our result limits the isotropic Lorentz violating parameter κ~tr\tilde{\kappa}_{tr} to 3.4 ±\pm 6.2 x 10−910^{-9}, the best reported constraint from direct measurements. Using this technique the bounds on odd-parity and scalar violations of Lorentz invariance can be improved by many orders of magnitude.Comment: Accepted for publication in Phys. Rev.

    Analysis of 3D-printed metal for rapid-prototyped reflective terahertz optics

    Get PDF
    We explore the potential of 3D metal printing to realize complex conductive terahertz devices. Factors impacting performance such as printing resolution, surface roughness, oxidation, and material loss are investigated via analytical, numerical, and experimental approaches. The high degree of control offered by a 3D-printed topology is exploited to realize a zone plate operating at 530 GHz. Reflection efficiency at this frequency is found to be over 90%. The high-performance of this preliminary device suggest that 3D metal printing can play a strong role in guided-wave and general beam control devices in the terahertz range.Comment: 13 pages, 6 figures, submitted to Optics Expres

    Nano-Kelvin thermometry and temperature control: beyond the thermal noise limit

    Get PDF
    We demonstrate thermometry with a resolution of 80 nK/Hz\mathrm{nK} / \sqrt{\mathrm{Hz}} using an isotropic crystalline whispering-gallery mode resonator based on a dichroic dual-mode technique. We simultaneously excite two modes that have a mode frequency ratio very close to two (±0.3\pm0.3ppm). The wavelength- and temperature-dependence of the refractive index means that the frequency difference between these modes is an ultra-sensitive proxy of the resonator temperature. This approach to temperature sensing automatically suppresses sensitivity to thermal expansion and vibrationally induced changes of the resonator. We also demonstrate active suppression of temperature fluctuations in the resonator by controlling the intensity of the driving laser. The residual temperature fluctuations are shown to be below the limits set by fundamental thermodynamic fluctuations of the resonator material

    Saturation Spectroscopy of Iodine in Hollow-core Optical Fibre

    Get PDF
    We present high-resolution spectroscopy of Iodine vapour that is loaded and trapped within the core of a hollow-core photonic crystal fibre (HC-PCF). We compare the observed spectroscopic features to those seen in a conventional iodine cell and show that the saturation characteristics differ significantly. Despite the confined geometry it was still possible to obtain sub-Doppler features with a spectral width of ~6 MHz with very high contrast. We provide a simple theory which closely reproduces all the key observations of the experiment.Comment: 12 pages, 7 figure

    Optimized coupling of cold atoms into a fiber using a blue-detuned hollow-beam funnel

    Full text link
    We theoretically investigate the process of coupling cold atoms into the core of a hollow-core photonic-crystal optical fiber using a blue-detuned Laguerre-Gaussian beam. In contrast to the use of a red-detuned Gaussian beam to couple the atoms, the blue-detuned hollow-beam can confine cold atoms to the darkest regions of the beam thereby minimizing shifts in the internal states and making the guide highly robust to heating effects. This single optical beam is used as both a funnel and guide to maximize the number of atoms into the fiber. In the proposed experiment, Rb atoms are loaded into a magneto-optical trap (MOT) above a vertically-oriented optical fiber. We observe a gravito-optical trapping effect for atoms with high orbital momentum around the trap axis, which prevents atoms from coupling to the fiber: these atoms lack the kinetic energy to escape the potential and are thus trapped in the laser funnel indefinitely. We find that by reducing the dipolar force to the point at which the trapping effect just vanishes, it is possible to optimize the coupling of atoms into the fiber. Our simulations predict that by using a low-power (2.5 mW) and far-detuned (300 GHz) Laguerre-Gaussian beam with a 20-{\mu}m radius core hollow-fiber it is possible to couple 11% of the atoms from a MOT 9 mm away from the fiber. When MOT is positioned further away, coupling efficiencies over 50% can be achieved with larger core fibers.Comment: 11 pages, 12 figures, 1 tabl

    Nano-Kelvin thermometry and temperature control: Beyond the thermal noise limit

    Get PDF
    We demonstrate thermometry with a resolution of 80nK/Hz using an isotropic crystalline whispering-gallery mode resonator based on a dichroic dual-mode technique. We simultaneously excite two modes that have a mode frequency ratio that is very close to two (±0.3ppm). The wavelength and temperature dependence of the refractive index means that the frequency difference between these modes is an ultrasensitive proxy of the resonator temperature. This approach to temperature sensing automatically suppresses sensitivity to thermal expansion and vibrationally induced changes of the resonator. We also demonstrate active suppression of temperature fluctuations in the resonator by controlling the intensity of the driving laser. The residual temperature fluctuations are shown to be below the limits set by fundamental thermodynamic fluctuations of the resonator material

    Stabilization of a dynamically unstable opto-thermo-mechanical oscillator

    Get PDF
    We theoretically and experimentally examine thermal oscillations in a calcium fluoride whispering-gallery-mode resonator that lead to strong mode-frequency oscillations. We show that these oscillations arise from interplay among thermal expansion, the thermo-optic effect, and Kerr effects. In certain regimes we observe chaotic behavior and demonstrate that the threshold for this behavior can be predicted theoretically. We then demonstrate a self-stabilization technique that suppresses the oscillations and delivers high temperature and frequency stability without reference to external standards

    Ultrafast Resonant Polarization Interferometry: Towards the First Direct Detection of Vacuum Polarization

    Full text link
    Vacuum polarization, an effect predicted nearly 70 years ago, is still yet to be directly detected despite significant experimental effort. Previous attempts have made use of large liquid-helium cooled electromagnets which inadvertently generate spurious signals that mask the desired signal. We present a novel approach for the ultra-sensitive detection of optical birefringence that can be usefully applied to a laboratory detection of vacuum polarization. The new technique has a predicted birefringence measurement sensitivity of Δn∼1020\Delta n \sim 10^{20} in a 1 second measurement. When combined with the extreme polarizing fields achievable in this design we predict that a vacuum polarization signal will be seen in a measurement of just a few days in duration.Comment: 9 pages, 2 figures. submitted to PR
    corecore