16 research outputs found

    Measurements of B Meson Lifetime Ratios with the LHCb Detector

    Get PDF
    The LHCb experiment is one of the four main experiments at the Large Hadron Collider (LHC) at CERN. The LHCb detector is a one-arm spectrometer dedicated to precise measurements of the CP-violation and studies or rare b-hadron decays. The centre of mass energy and luminosity (for a hadron collider) have both values never reached before. LHCb started data taking in November 2009. LHCb relies on excellent reconstruction and trigger efficiency, very good mass and proper time resolution, reliable particle identification systems to achieve the wanted precision on CP-violation parameters. These performances cannot be fulfilled without the detector to be calibrated. For instance, the Inner Tracker (IT) is readout by around a thousand chips, and the data are processed by 42 data acquisition cards, called TELL1. The Tracker Turicensis (TT) data are processed by 48 TELL1 boards. Each of these TELl1 boards has more than 18,000 parameters that need to be tuned in order to reduce the fake hits in the tracking systems. A high number of fake hits would result in poorer tracking performances. The first part of this thesis discuss the calibration of the IT and TT TELL1 boards. The first step was to find a way to extract the needed parameter values from data taken without beam. Once the parameters were gathered, a way to store them for future usage had to be found. The chosen solution was to use XML file, since XML files were already used for the detector geometry description and detector conditions. The XML file offered a convenient way to use the TELL1 parameters in the software framework, but those parameters were of course also required for data taking, i.e. they have to be uploaded to the TELL1 boards. A software library had to be developed in order to 'translate' the information contained in the XML file into a format handled by the control software. The second part discusses hit efficiency measurements in the IT. These measurements were shown to allow a monitoring of the detector status, as several hardware problems could be discovered by looking at the obtained efficiencies. Studies of the efficiency as a function of the clustering threshold allowed to improve background rejection in IT and TT by increasing one of the clustering thresholds. Finally, the last part covers the measurement of the B-meson lifetime in three decay channels: B+ → J/ψ(1S) (μ+ μ-) K+, B0 → J/ψ(1S) (μ+ μ-) K*0 (K+ π-), Bs0 → J/ψ(1S) (μ+ μ-) φ (K+ K-). These values are already quite well known for B± and B0, but their measurement represents a milestone in the measurement of the CP violating phase φs in the Bs0 → J/ψ (1S) φ decay. Lifetime ratios are also presented: τB± / τB0, τBs0 / τB0 and τB+ / τB-. The first two allow to probe the Heavy Quark Effective Theory (HQET), whilst the last one is a test of CPT symmetry, foundation of the Quantum Field Theory

    Studies of beauty baryon decays to D0ph− and Λ+ch− final states

    Get PDF

    A study of CP violation in B-+/- -> DK +/- and B-+/- -> D pi(+/-) decays with D -> (KSK +/-)-K-0 pi(-/+) final states

    Get PDF
    A first study of CP violation in the decay modes B±[KS0K±π]Dh±B^\pm\to [K^0_{\rm S} K^\pm \pi^\mp]_D h^\pm and B±[KS0Kπ±]Dh±B^\pm\to [K^0_{\rm S} K^\mp \pi^\pm]_D h^\pm, where hh labels a KK or π\pi meson and DD labels a D0D^0 or D0\overline{D}^0 meson, is performed. The analysis uses the LHCb data set collected in pppp collisions, corresponding to an integrated luminosity of 3 fb1^{-1}. The analysis is sensitive to the CP-violating CKM phase γ\gamma through seven observables: one charge asymmetry in each of the four modes and three ratios of the charge-integrated yields. The results are consistent with measurements of γ\gamma using other decay modes

    Study of forward Z + jet production in pp collisions at √s=7 TeV

    Get PDF
    A measurement of the Z(μ+μ)Z(\rightarrow\mu^+\mu^-)+jet production cross-section in pppp collisions at a centre-of-mass energy s=7\sqrt{s} = 7 TeV is presented. The analysis is based on an integrated luminosity of 1.0fb11.0\,\text{fb}^{-1} recorded by the LHCb experiment. Results are shown with two jet transverse momentum thresholds, 10 and 20 GeV, for both the overall cross-section within the fiducial volume, and for six differential cross-section measurements. The fiducial volume requires that both the jet and the muons from the Z boson decay are produced in the forward direction (2.0<η<4.52.0<\eta<4.5). The results show good agreement with theoretical predictions at the second-order expansion in the coupling of the strong interaction.A measurement of the Z(μ+μ)Z(\rightarrow\mu^+\mu^-)+jet production cross-section in pppp collisions at a centre-of-mass energy s=7\sqrt{s} = 7 TeV is presented. The analysis is based on an integrated luminosity of 1.0fb11.0\,\text{fb}^{-1} recorded by the LHCb experiment. Results are shown with two jet transverse momentum thresholds, 10 and 20 GeV, for both the overall cross-section within the fiducial volume, and for six differential cross-section measurements. The fiducial volume requires that both the jet and the muons from the Z boson decay are produced in the forward direction (2.0<η<4.52.0<\eta<4.5). The results show good agreement with theoretical predictions at the second-order expansion in the coupling of the strong interaction

    Measurement of Upsilon production in collisions at root s=2.76 TeV

    Get PDF
    The production of Υ(1S)\Upsilon(1S), Υ(2S)\Upsilon(2S) and Υ(3S)\Upsilon(3S) mesons decaying into the dimuon final state is studied with the LHCb detector using a data sample corresponding to an integrated luminosity of 3.3 pb1pb^{-1} collected in proton-proton collisions at a centre-of-mass energy of s=2.76\sqrt{s}=2.76 TeV. The differential production cross-sections times dimuon branching fractions are measured as functions of the Υ\Upsilon transverse momentum and rapidity, over the ranges $p_{\rm T} Upsilon(1S) X) x B(Upsilon(1S) -> mu+mu-) = 1.111 +/- 0.043 +/- 0.044 nb, sigma(pp -> Upsilon(2S) X) x B(Upsilon(2S) -> mu+mu-) = 0.264 +/- 0.023 +/- 0.011 nb, sigma(pp -> Upsilon(3S) X) x B(Upsilon(3S) -> mu+mu-) = 0.159 +/- 0.020 +/- 0.007 nb, where the first uncertainty is statistical and the second systematic

    Performance of LHCb Silicon Tracker Detector in the LHC

    Get PDF
    The LHCb experiment is designed to perform high-precision measurements of CP violation and search for New Physics using the enormous flux of beauty and charmed hadrons produced at the LHC. The LHCb detector is a single-arm spectrometer with excellent tracking and particle identification capabilities. The Silicon Tracker is part of the tracking system and measures very precisely the particle trajectories coming from the interaction point in the region of high occupancies around the beam axis. The LHCb Silicon Tracker covers a total sensitive area of about 12 m 2 using silicon micro-strip technology. This paper reports on the operation and performance of the Silicon Tracker during the Physics data taking at the LHC

    Measurement of the Bc+B_c^+ meson lifetime using Bc+J/ψμ+νμXB_c^+ \to J/\psi\mu^+ \nu_{\mu} X decays

    No full text
    The lifetime of the Bc+B_c^+ meson is measured using semileptonic decays having a J/ψJ/\psi meson and a muon in the final state. The data, corresponding to an integrated luminosity of 2 fb12\mathrm{~fb^{-1}}, are collected by the LHCb detector in pppp collisions at a centre-of-mass energy of 8TeV8\,\mathrm{TeV}. The measured lifetime is τ=509±8±12 fs,\tau = 509 \pm 8 \pm 12 \mathrm{~fs}, where the first uncertainty is statistical and the second is systematic.The lifetime of the Bc+B_c^+ meson is measured using semileptonic decays having a J ⁣/ ⁣ψJ\!/\!\psi meson and a muon in the final state. The data, corresponding to an integrated luminosity of 2 fb12\mathrm{~fb^{-1}}, are collected by the LHCb detector in pppp collisions at a centre-of-mass energy of 8TeV8\,\mathrm{TeV}. The measured lifetime is τ=509±8±12 fs,\tau = 509 \pm 8 \pm 12 \mathrm{~fs}, where the first uncertainty is statistical and the second is systematic.The lifetime of the B c + meson is measured using semileptonic decays having a J / ψ meson and a muon in the final state. The data, corresponding to an integrated luminosity of 2 fb - 1 , are collected by the LHCb detector in p p collisions at a centre-of-mass energy of 8 TeV. The measured lifetime is τ = 509 ± 8 ± 12 fs , where the first uncertainty is statistical and the second is systematic

    Observation of associated production of a ZZ boson with a DD meson in the forward region

    No full text
    A search for associated production of a ZZ boson with an open charm meson is presented using a data sample, corresponding to an integrated luminosity of 1.0fb11.0\mathrm{fb}^{-1} of proton--proton collisions at a centre-of-mass energy of 7 TeV, collected by the LHCb experiment. Seven candidate events for associated production of a ZZ boson with a D0D^0 meson and four candidate events for a ZZ boson with a D+D^+ meson are observed with a combined significance of 5.1 standard deviations. The production cross-sections in the forward region are measured to be σZμ+μ ⁣,D0=2.50±1.12±0.22pb\sigma_{Z\rightarrow\mu^+\mu^-\!,D^0} = 2.50\pm1.12\pm0.22pb σZμ+μ ⁣,D+=0.44±0.23±0.03pb,\sigma_{Z\rightarrow\mu^+\mu^-\!,D^+} = 0.44\pm0.23\pm0.03pb, where the first uncertainty is statistical and the second systematic

    Updated measurements of exclusive J/ψJ/\psi and ψ(2S)\psi(2S) production cross-sections in pppp collisions at s=7\sqrt{s}=7 TeV

    No full text
    The differential cross-section as a function of rapidity has been measured for the exclusive production of J/ψJ/\psi and ψ(2S)\psi(2S) mesons in proton-proton collisions at s=7\sqrt{s}=7 TeV, using data collected by the LHCb experiment, corresponding to an integrated luminosity of 930 pb1^{-1}. The cross-sections times branching fractions to two muons having pseudorapidities between 2.0 and 4.5 are measured to be σppJ/ψμ+μ(2.0<ημ±<4.5)=291±7±19 pb,σppψ(2S)μ+μ(2.0<ημ±<4.5)=6.5±0.9±0.4 pb,\begin{array}{rl} \sigma_{pp\rightarrow J/\psi\rightarrow{\mu^+}{\mu^-}}(2.0<\eta_{\mu^\pm }<4.5)=&291\pm 7\pm19 {\rm \ pb},\\ \sigma_{pp\rightarrow\psi(2S)\rightarrow{\mu^+}{\mu^-}}(2.0<\eta_{\mu^\pm}<4.5)=&6.5\pm 0.9\pm 0.4 {\rm \ pb},\end{array} where the first uncertainty is statistical and the second is systematic. The measurements agree with next-to-leading order QCD predictions as well as with models that include saturation effects.The differential cross-section as a function of rapidity has been measured for the exclusive production of J/ψJ/\psi and ψ(2S)\psi(2S) mesons in proton-proton collisions at s=7\sqrt{s}=7 TeV, using data collected by the LHCb experiment, corresponding to an integrated luminosity of 930 pb1^{-1}. The cross-sections times branching fractions to two muons having pseudorapidities between 2.0 and 4.5 are measured to be σppJ/ψμ+μ(2.0<ημ±<4.5)=291±7±19 pb,σppψ(2S)μ+μ(2.0<ημ±<4.5)=6.5±0.9±0.4 pb,\begin{array}{rl} \sigma_{pp\rightarrow J/\psi\rightarrow{\mu^+}{\mu^-}}(2.0<\eta_{\mu^\pm }<4.5)=&291\pm 7\pm19 {\rm \ pb},\\ \sigma_{pp\rightarrow\psi(2S)\rightarrow{\mu^+}{\mu^-}}(2.0<\eta_{\mu^\pm}<4.5)=&6.5\pm 0.9\pm 0.4 {\rm \ pb},\end{array} where the first uncertainty is statistical and the second is systematic. The measurements agree with next-to-leading order QCD predictions as well as with models that include saturation effects.The differential cross-section as a function of rapidity has been measured for the exclusive production of J/ψJ/\psi and ψ(2S)\psi(2S) mesons in proton-proton collisions at s=7\sqrt{s}=7 TeV, using data collected by the LHCb experiment, corresponding to an integrated luminosity of 930 pb1^{-1}. The cross-sections times branching fractions to two muons having pseudorapidities between 2.0 and 4.5 are measured to be σppJ/ψμ+μ(2.0<ημ±<4.5)=291±7±19 pb,σppψ(2S)μ+μ(2.0<ημ±<4.5)=6.5±0.9±0.4 pb,\begin{array}{rl} \sigma_{pp\rightarrow J/\psi\rightarrow{\mu^+}{\mu^-}}(2.0<\eta_{\mu^\pm }<4.5)=&291\pm 7\pm19 {\rm \ pb},\\ \sigma_{pp\rightarrow\psi(2S)\rightarrow{\mu^+}{\mu^-}}(2.0<\eta_{\mu^\pm}<4.5)=&6.5\pm 0.9\pm 0.4 {\rm \ pb},\end{array} where the first uncertainty is statistical and the second is systematic. The measurements agree with next-to-leading order QCD predictions as well as with models that include saturation effects
    corecore