52 research outputs found

    Physiological and Biochemical Adaptive Traits in Leaves of Four Citrus Species Grown in an Italian Charterhouse

    Get PDF
    Citrus trees are a very important crops that are cultivated worldwide, but not much knowledge is known about the ecophysiological responses to climatic changes in trees under natural conditions. The aim of this study was to investigate their adaptive capacity in response to seasonal phenological and environmental changes. The trial included Citrus trees (sweet orange, bitter orange, lemon, mandarin) growing under non-regular cropping conditions in a Monumental Charterhouse in Tuscany, in a subtropical Mediterranean climate with hot summer conditions. During a 1-year field trial, we determined the variations in chlorophyll fluorescence parameters and leaf biochemical traits (content of chlorophylls and carotenoids, total phenolic content (TPC), total antioxidant capacity (TAC), and total non-structural carbohydrates). In all Citrus spp., interspecific mean values of photochemical efficiency peaked during the summer, while a marked photoinhibition occurred in the winter in concomitance with higher interspecific mean values of leaf TPC, TAC, and non-structural carbohydrates. The trees showed the pivotal role played by photosynthetic acclimation as a survival strategy to tolerate abiotic stress in the climate change hotspot of Mediterranean environment. This study is included in a wider project aimed at a new valorization of Citrus trees as genetic resource and its by-products with added-value applications for innovative functional foods

    Gut microbiota composition in COVID-19 hospitalized patients with mild or severe symptoms

    Get PDF
    Background and aimCOVID-19, the infectious disease caused by SARS-CoV-2 virus that has been causing a severe pandemic worldwide for more than 2 years, is characterized by a high heterogeneity of clinical presentations and evolution and, particularly, by a varying severity of respiratory involvement. This study aimed to analyze the diversity and taxonomic composition of the gut microbiota at hospital admission, in order to evaluate its association with COVID-19 outcome. In particular, the association between gut microbiota and a combination of several clinical covariates was analyzed in order to characterize the bacterial signature associate to mild or severe symptoms during the SARS-CoV-2 infection.Materials and methodsV3–V4 hypervariable region of 16S rRNA gene sequencing of 97 rectal swabs from a retrospective cohort of COVID-19 hospitalized patients was employed to study the gut microbiota composition. Patients were divided in two groups according to their outcome considering the respiratory supports they needed during hospital stay: (i) group “mild,” including 47 patients with a good prognosis and (ii) group “severe,” including 50 patients who experienced a more severe disease due to severe respiratory distress that required non-invasive or invasive ventilation. Identification of the clusters of bacterial population between patients with mild or severe outcome was assessed by PEnalized LOgistic Regression Analysis (PELORA).ResultsAlthough no changes for Chao1 and Shannon index were observed between the two groups a significant greater proportion of Campylobacterota and Actinobacteriota at phylum level was found in patients affected by SARS-CoV-2 infection who developed a more severe disease characterized by respiratory distress requiring invasive or non-invasive ventilation. Clusters have been identified with a useful early potential prognostic marker of the disease evolution.DiscussionMicroorganisms residing within the gut of the patients at hospital admission, were able to significantly discriminate the clinical evolution of COVID-19 patients, in particular who will develop mild or severe respiratory involvement. Our data show that patients affected by SARS-CoV-2 with mild or severe symptoms display different gut microbiota profiles which can be exploited as potential prognostic biomarkers paving also the way to new integrative therapeutic approaches

    Valorization of a Waste Product of Edible Flowers: Volatile Characterization of Leaves

    No full text
    (1) Background: The leaves of some plants are reported for their culinary uses, while in edible flowers, they are one of the discarded products in the supply chain. We investigated the volatile profile (VP) and the essential oil (EO) compositions of leaves from 12 Lamiaceae species, of which nine belong to the Mentheae tribe and three to the Ocimeae tribe. (2) Methods: Phytochemical analyses were performed using a GC-MS instrument. (3) Results: More than 53% of the Ocimeae tribe VP was represented by sesquiterpene hydrocarbons (SH), followed by phenylpropanoids, except for O. × citriodorum, where oxygenated monoterpenes (OM) were the second main class. OM prevailed in six species of the Mentheae tribe except for Agastache ‘Arcado Pink’, Salvia discolor, and S. microphylla, where SH dominated. The EO composition of Ocimeae tribe showed a similar behavior to that of VP concerning the predominant classes. O. basilicum ‘Blue Spice’ (Ob-BS) was an exception, since it showed oxygenated sesquiterpenes (OS: 29.6%) as a second principal class. Sesquiterpene compounds were also present in a high amount in two species of the Salviinae subtribe (S. microphylla and S. discolor) and two of the Nepetinae subtribe (Nepeta × faasenii and A. ‘Arcado Pink’). The remaining species of the Mentheae tribe were characterized by OM. (4) Conclusions: Many of the main compounds found were reported for their importance in human health and thus are important as ingredients in several new industrial products

    Valorization of a Waste Product of Edible Flowers: Volatile Characterization of Leaves

    No full text
    (1) Background: The leaves of some plants are reported for their culinary uses, while in edible flowers, they are one of the discarded products in the supply chain. We investigated the volatile profile (VP) and the essential oil (EO) compositions of leaves from 12 Lamiaceae species, of which nine belong to the Mentheae tribe and three to the Ocimeae tribe. (2) Methods: Phytochemical analyses were performed using a GC-MS instrument. (3) Results: More than 53% of the Ocimeae tribe VP was represented by sesquiterpene hydrocarbons (SH), followed by phenylpropanoids, except for O. x citriodorum, where oxygenated monoterpenes (OM) were the second main class. OM prevailed in six species of the Mentheae tribe except for Agastache 'Arcado Pink', Salvia discolor, and S. microphylla, where SH dominated. The EO composition of Ocimeae tribe showed a similar behavior to that of VP concerning the predominant classes. O. basilicum 'Blue Spice' (Ob-BS) was an exception, since it showed oxygenated sesquiterpenes (OS: 29.6%) as a second principal class. Sesquiterpene compounds were also present in a high amount in two species of the Salviinae subtribe (S. microphylla and S. discolor) and two of the Nepetinae subtribe (Nepeta x faasenii and A. 'Arcado Pink'). The remaining species of the Mentheae tribe were characterized by OM. (4) Conclusions: Many of the main compounds found were reported for their importance in human health and thus are important as ingredients in several new industrial products

    Bioactive Compounds and Aroma Profile of Some Lamiaceae Edible Flowers

    No full text
    Edible flowers are consumed for their appearance, colours, nutritional and healthy properties, but the use is limited by the actual number of the species. Seven edible flowers of the Lamiaceae family (Ocimeae and Mentheae tribes) were investigated: Monarda didyma ‘Fireball’, Nepeta × faassenii ‘Six Hills Giant’, Ocimum basilicum ‘Blue Spice’, O. basilicum ‘Cinnamon’, Ocimum × citriodorum, Salvia discolor, and Salvia microphylla ‘Hot Lips’. Total soluble sugars, proteins, polyphenols, carotenoids, ascorbic acid and antioxidant activity were detected. The species of the Mentheae tribe contained higher sugar content than Ocimeae flowers, the opposite with regard to protein content. Ocimeae tribe flowers showed high polyphenols and carotenoids content. The Ocimeae tribe together with two specie of the Mentheae tribe showed an aroma profile dominated by sesquiterpene hydrocarbons (58.0% in S. discolor to 77.9% in Ocimum × citriodorum). Oxygenated monoterpenes prevailed in Nepeta and Monarda, also present in the essential oil of this latter species (84.5%). By contrast, Nepeta and S. discolor evidenced non-terpenes as the principal class (41.2% and 77.5%, respectively), while the oxygenated sesquiterpene was the main one in S. microphylla. The two varieties of Ocimum spp. showed oxygenated monoterpenes as the main class of volatiles

    Volatilomic Analysis of Four Edible Flowers from Agastache Genus

    No full text
    Volatilomes emitted from edible flowers of two species of Agastache (A. aurantiaca (A.Gray) Lint & Epling, and A. mexicana (Kunth) Lint & Epling) and from two hybrids (Agastache ‘Arcado Pink’ and Agastache ‘Blue Boa’) were investigated using a solid-phase microextraction technique as well as the extraction of its essential oils. Oxygenated monoterpenes were almost always the predominant class (>85%) of volatile organic compounds (VOCs) in each sample of A. aurantiaca, A. ‘Blue Boa’ and A. mexicana, with the exception of A. ‘Arcado Pink’ (38.6%). Pulegone was the main compound in A. aurantiaca (76.7%) and A. ‘Blue Boa’ (82.4%), while geranyl acetate (37.5%) followed by geraniol (16%) and geranial (17%) were the principal ones in A. mexicana. The essential oil composition showed the same behavior as the VOCs both for the main class as well as the major constituent (pulegone) with the same exception for A. mexicana. Total soluble sugars, secondary metabolites (polyphenols, flavonoids and anthocyanins) and antioxidant activity were also investigated to emphasize the nutraceutical properties of these edible flowers

    Applicazione della tecnica perfusione MRI nella valutazione del grado di malignitĂ  dei gliomi cerebrali

    No full text
    In the cerebral gliomas clinical practice, correct grading is really important. Establishing the correct lesion’s malignancy degree has relevant clinical implications, in terms of outcome and therapeutic strategies. Histopathologicalogical evaluation of cerebral gliomas sometime is difficult because of the impossibility of surgery or sampling mistakes, and imaging study with Magnetic Resonance provides morphological important information, but not so reliable for malignancy. During last years, there has been a considerable development of advanced RM techniques, which completes anatomy information, providing precious indications about the functionality of the investigated lesions. Perfusion represents the direct measure of the microvascularization of a tissue and can be used as a marker of imaging to estimate the tumor angiogenesis and the degree of malignancy. Our work aimed at evaluating the role of MR perfusion in establishing the correct grade of cerebral gliomas: we analysed perfusion maps of 22 patients affected by low grade or high grade gliomas, with or without histological confirmation, and after that we compared among tumor degrees II, III, IV and between simplified grade (low grade gliomas and high grade gliomas) with the main parameters of perfusion CBV (Cerbral Blood Volume) e CBF (Cerebral Blood Flow). A positive correlation has been found out between the two parameters and between the parameters and the cancer degree and this means that the bigger the degree of malignancy, the greater the perfusion is. This agrees with the histological datum that shows that the more consistent the vascularization, the more malignant the lesion is. It has been possible distinguishing between high grade gliomas and low grade gliomas throw the perfusion parameters, but it has not been possible to make a distinction between II/III and III/IV, because of the low number of patients suffering from grade III gliomas. Therefore, perfusion MR study might represent a useful instrument for the differential diagnosis between HGG and LGG, with relevant implications in the follow-up too. It’s still necessary to evaluate the discriminating power of the technique in the intermediate grade tumor

    Phytonutritional Content and Aroma Profile Changes During Postharvest Storage of Edible Flowers

    No full text
    Edible flowers are niche horticultural products, routinely used as cooking ingredients in the food industry. Currently, new species are required with the aim of enlarging the number of species with a long shelf-life, healthy nutraceutical compounds, and new fragrance and tastes. Ageratum houstonianum Mill, Tagetes lemmonii A. Gray, Salvia dorisiana Standl, and Pelargonium odoratissimum (L.) L’HĂ©r “Lemon” were selected for their different morphological characteristics and color. Fresh flowers were analyzed to characterize their phytonutritional content and aroma profile. Postharvest was determined up to 6 days of cold storage at 4C in transparent polypropylene boxes. Visual quality and cellular membrane damage were observed. The relative content of different antioxidant constituents (e.g., polyphenols, flavonoids, anthocyanins, ascorbic acid), nutritional compounds (soluble sugars, crude proteins), the antioxidant scavenging activity, and the volatile profile were determined and correlated to the quality of shelf-life of the different species. The yellow T. lemmonii freshly picked flowers showed the highest ascorbic acid and flavonoids content, which was maintained during the cold storage, as well as the best visual quality. Limited changes in metabolites were detected in the light blue A. houstonianum during postharvest, although the visual quality is severely compromised. Magenta S. dorisiana and light pink P. odoratissimum showed similar changes in antioxidant constituents during cold storage. For the first time, the volatile compounds have been identified in the four species. Sesquiterpene hydrocarbons are the main class in fresh flowers of A. houstonianum, S. dorisiana, and P. odoratissimum, while monoterpene hydrocarbons are abundant in T. lemmonii. The cold storage influenced mainly P. odoratissimum and S. dorisiana flavor initially dominated by the increase in total monoterpenes at 6 days, reaching a relative content of 90%. Both A. houstonianum and T. lemmonii conserved the prevalence of the same class of constituents in all the analyzed conditions, even though the cold storage influenced the major compound abundance. On the basis of the results, T. lemmonii was the most interesting species with the longest shelf-life due to its phytonutritional and aromatic constituents. Results indicated the peculiar metabolic and physiological attitude of flowers species to cold storage

    Phytonutritional and aromatic profiles of Tulbaghia simmleri Beauv. edible flowers during cold storage

    Get PDF
    Edible flowers are appreciated due to their aesthetic features, nutritional value and antioxidant properties. Tulbaghia simmleri Beauv. (Amaryllidaceae family) flowers are characterized by a pleasant garlic taste and are consumed both as fresh and dried products. The aim of this work was to assess the effect of chilling temperature (+4°C) on the visual quality, nutritional content, and aroma profile of T. simmleri flowers after two (T2) and six (T6) days of storage. Colorimetric analysis highlighted a reduction in petal brightness at T6 and hence their darkening, due to a significant increase in a* coordinate and decrease in the b* one. Total polyphenols and flavonoids content remained unchanged until the end of the experiment, while total anthocyanins increased at T2. Flowers antioxidant activity (DPPH assay) decreased progressively during cold storage, while catalase (CAT) and ascorbate peroxidase (APX) activities increased. The aroma profile was analyzed by HS-SPME associated with GC-MS, underlining that fresh flowers were dominated by high content in monoterpenes (around 80%), with 1,8-cineol as main compound (53.1%). Cold storage reduced this class of volatiles while sesquiterpenes and non-terpenes increased; between them, benzyl benzoate reached 12%

    Small Functional Foods: Comparative Phytochemical and Nutritional Analyses of Five Microgreens of the Brassicaceae Family

    No full text
    Microgreens are the seedlings of herbs and vegetables which are harvested at the development stage of their two cotyledonary leaves, or sometimes at the emergence of their rudimentary first pair of true leaves. They are functional foods, the consumption of which is steadily increasing due to their high nutritional value. The species of the Brassicaceae family are good sources of bioactive compounds, with a favorable nutritional profile. The present study analyzed some phytochemical compounds with nutritional values, such as chlorophylls, polyphenols, carotenoids, anthocyanins, ascorbic acid, total and reducing sugars, and the antioxidant activity of five Brassicaceae species: broccoli (Brassica oleracea L.), daikon (Raphanus raphanistrum subsp. sativus (L.) Domin), mustard (Brassica juncea (L.) Czern.), rocket salad (Eruca vesicaria (L.) Cav.), and watercress (Nasturtium officinale R.Br.). Broccoli had the highest polyphenol, carotenoid and chlorophyll contents, as well as a good antioxidant ability. Mustard was characterized by high ascorbic acid and total sugar contents. By contrast, rocket salad exhibited the lowest antioxidant content and activity. The essential oil (EO) composition of all of these species was determined in order to identify their profile and isothiocyanates content, which are compounds with many reported health benefits. Isothiocyanates were the most abundant group in broccoli (4-pentenyl isothiocyanate), mustard (allyl isothiocyanate), and watercress (benzyl isothiocyanate) EOs, while rocket salad and daikon exhibited higher contents of monoterpene hydrocarbons (myrcene) and oxygenated diterpenes (phytol), respectively. Broccoli microgreens exhibited the overall best nutritional profile, appearing as the most promising species to be consumed as a functional food among those analyzed
    • 

    corecore