23,626 research outputs found

    La corrupción administrativa en México. José Juan Sánchez González, México, Instituto de Administración Pública del Estado de México, 2012, 531 pp.

    Get PDF
    México ocupa la posición 105 en el mundo en materia de corrupción, con un valor de 34 sobre 100 puntos; muy por debajo de Dinamarca, Finlandia y Nueva Zelanda, que obtuvieron 90 puntos. Nuestro país tiene una posición alta en comparación con otros paí- ses miembros de la Organización para la Cooperación y el Desarrollo Económicos (OCDE) y el G20, de acuerdo con el Índice de Percepción de la Corrupción emitido por Transparencia Internacional (2012). Asimismo, de manera vergonzosa se encuentra en una posición similar a la de países como: Argelia, Armenia, Bolivia, Gambia, Kosovo, Mali y Filipinas

    A spectral radius type formula for approximation numbers of composition operators

    Get PDF
    For approximation numbers an(Cϕ)a_n (C_\phi) of composition operators CϕC_\phi on weighted analytic Hilbert spaces, including the Hardy, Bergman and Dirichlet cases, with symbol ϕ\phi of uniform norm <1< 1, we prove that \lim_{n \to \infty} [a_n (C_\phi)]^{1/n} = \e^{- 1/ \capa [\phi (\D)]}, where \capa [\phi (\D)] is the Green capacity of \phi (\D) in \D. This formula holds also for HpH^p with 1p<1 \leq p < \infty.Comment: 25 page

    Estimates for approximation numbers of some classes of composition operators on the Hardy space

    Get PDF
    We give estimates for the approximation numbers of composition operators on H2H^2, in terms of some modulus of continuity. For symbols whose image is contained in a polygon, we get that these approximation numbers are dominated by \e^{- c \sqrt n}. When the symbol is continuous on the closed unit disk and has a domain touching the boundary non-tangentially at a finite number of points, with a good behavior at the boundary around those points, we can improve this upper estimate. A lower estimate is given when this symbol has a good radial behavior at some point. As an application we get that, for the cusp map, the approximation numbers are equivalent, up to constants, to \e^{- c \, n / \log n}, very near to the minimal value \e^{- c \, n}. We also see the limitations of our methods. To finish, we improve a result of O. El-Fallah, K. Kellay, M. Shabankhah and H. Youssfi, in showing that for every compact set KK of the unit circle \T with Lebesgue measure 0, there exists a compact composition operator Cϕ ⁣:H2H2C_\phi \colon H^2 \to H^2, which is in all Schatten classes, and such that ϕ=1\phi = 1 on KK and ϕ<1|\phi | < 1 outside KK

    Infinitesimal Carleson property for weighted measures induced by analytic self-maps of the unit disk

    Get PDF
    We prove that, for every α>1\alpha > -1, the pull-back measure ϕ(Aα)\phi ({\cal A}_\alpha) of the measure dAα(z)=(α+1)(1z2)αdA(z)d{\cal A}_\alpha (z) = (\alpha + 1) (1 - |z|^2)^\alpha \, d{\cal A} (z), where A{\cal A} is the normalized area measure on the unit disk \D, by every analytic self-map \phi \colon \D \to \D is not only an (α+2)(\alpha + 2)-Carleson measure, but that the measure of the Carleson windows of size \eps h is controlled by \eps^{\alpha + 2} times the measure of the corresponding window of size hh. This means that the property of being an (α+2)(\alpha + 2)-Carleson measure is true at all infinitesimal scales. We give an application by characterizing the compactness of composition operators on weighted Bergman-Orlicz spaces
    corecore