4,104 research outputs found

    Detecting bifurcation values at infinity of real polynomials

    Full text link
    We present a new approach for estimating the set of bifurcation values at infinity. This yields a significant shrinking of the number of coefficients in the recent algorithm introduced by Jelonek and Kurdyka for reaching critical values at infinity by rational arcs

    Dealing with inconsistent judgments in multiple criteria sorting models.

    Get PDF
    Sorting models consist in assigning alternatives evaluated on several criteria to ordered categories. To implement such models it is necessary to set the values of the preference parameters used in the model. Rather than fixing the values of these parameters directly, a usual approach is to infer these values from assignment examples provided by the decision maker (DM), i.e., alternatives for which (s)he specifies a required category. However, assignment examples provided by DMs can be inconsistent, i.e., may not match the sorting model. In such situations, it is necessary to support the DMs in the resolution of this inconsistency. In this paper, we extend algorithms from Mousseau et al.(2003) that calculate different ways to remove assignment examples so that the information can be represented in the sorting model. The extension concerns the possibility to relax (rather than to delete) assignment examples. These algorithms incorporate information about the confidence attached to each assignment example, hence providing inconsistency resolutions that the DMs are most likely to accept.Multicriteria decision aiding; Inconsistency analysis; Sorting problem;

    A convex formulation for hyperspectral image superresolution via subspace-based regularization

    Full text link
    Hyperspectral remote sensing images (HSIs) usually have high spectral resolution and low spatial resolution. Conversely, multispectral images (MSIs) usually have low spectral and high spatial resolutions. The problem of inferring images which combine the high spectral and high spatial resolutions of HSIs and MSIs, respectively, is a data fusion problem that has been the focus of recent active research due to the increasing availability of HSIs and MSIs retrieved from the same geographical area. We formulate this problem as the minimization of a convex objective function containing two quadratic data-fitting terms and an edge-preserving regularizer. The data-fitting terms account for blur, different resolutions, and additive noise. The regularizer, a form of vector Total Variation, promotes piecewise-smooth solutions with discontinuities aligned across the hyperspectral bands. The downsampling operator accounting for the different spatial resolutions, the non-quadratic and non-smooth nature of the regularizer, and the very large size of the HSI to be estimated lead to a hard optimization problem. We deal with these difficulties by exploiting the fact that HSIs generally "live" in a low-dimensional subspace and by tailoring the Split Augmented Lagrangian Shrinkage Algorithm (SALSA), which is an instance of the Alternating Direction Method of Multipliers (ADMM), to this optimization problem, by means of a convenient variable splitting. The spatial blur and the spectral linear operators linked, respectively, with the HSI and MSI acquisition processes are also estimated, and we obtain an effective algorithm that outperforms the state-of-the-art, as illustrated in a series of experiments with simulated and real-life data.Comment: IEEE Trans. Geosci. Remote Sens., to be publishe

    A Framework for Fast Image Deconvolution with Incomplete Observations

    Full text link
    In image deconvolution problems, the diagonalization of the underlying operators by means of the FFT usually yields very large speedups. When there are incomplete observations (e.g., in the case of unknown boundaries), standard deconvolution techniques normally involve non-diagonalizable operators, resulting in rather slow methods, or, otherwise, use inexact convolution models, resulting in the occurrence of artifacts in the enhanced images. In this paper, we propose a new deconvolution framework for images with incomplete observations that allows us to work with diagonalized convolution operators, and therefore is very fast. We iteratively alternate the estimation of the unknown pixels and of the deconvolved image, using, e.g., an FFT-based deconvolution method. This framework is an efficient, high-quality alternative to existing methods of dealing with the image boundaries, such as edge tapering. It can be used with any fast deconvolution method. We give an example in which a state-of-the-art method that assumes periodic boundary conditions is extended, through the use of this framework, to unknown boundary conditions. Furthermore, we propose a specific implementation of this framework, based on the alternating direction method of multipliers (ADMM). We provide a proof of convergence for the resulting algorithm, which can be seen as a "partial" ADMM, in which not all variables are dualized. We report experimental comparisons with other primal-dual methods, where the proposed one performed at the level of the state of the art. Four different kinds of applications were tested in the experiments: deconvolution, deconvolution with inpainting, superresolution, and demosaicing, all with unknown boundaries.Comment: IEEE Trans. Image Process., to be published. 15 pages, 11 figures. MATLAB code available at https://github.com/alfaiate/DeconvolutionIncompleteOb

    Multi-Criteria versus Data Envelopment Analysis for Assessing the Performance of Biogas Plants

    Get PDF
    This paper compares multi-criteria decision aiding (MCDA) and data envelopment analysis (DEA) approaches for assessing renewable energy plants, in order to determine their performance in terms of economic, environmental, and social criteria and indicators. The case is for a dataset of 41 agricultural biogas plants in Austria using anaerobic digestion. The results indicate that MCDA constitutes an insightful approach, to be used alternatively or in a complementary way to DEA, namely in situations requiring a meaningful expression of managerial preferences regarding the relative importance of evaluation aspects to be considered in performance assessment.Multi-criteria decision analysis; DEA; Renewable energy; Biogas
    • 

    corecore