39 research outputs found
Abundance data for invertebrate assemblages from intertidal mussel beds along the Atlantic Canadian coast
This data set describes the abundance of 50 invertebrate taxa found in intertidal mussel beds along the Atlantic Canadian coast. This information resulted from a regionalscale study that investigated the effects of wave exposure on the richness and composition of invertebrate assemblages from intertidal mussel beds. Abundance data are provided for taxa representing the Annelida, Arthropoda, Bryozoa, Chordata, Cnidaria, Echinodermata, Mollusca, Nematoda, Nemertea, and Platyhelminthes. The data characterize mussel beds from wave-sheltered and wave-exposed locations spanning 315 km of the coast of Nova Scotia. Univariate and multivariate analyses revealed that the compositional structure of these invertebrate assemblages differed markedly depending on wave exposure. Overall, because of its taxonomic diversity, the inclusion of data for basal, intermediate, and top trophic levels, and the coverage of two extremes of environmental stress, this data set could be useful to test broader aspects of ecological theory. Areas of ecology that could advance using this data set are those concerning environmental stress models of community organization, abundance–occupancy relationships, species co-occurrence, species abundance distributions, dominance and rarity, spatial scales of population and community variation, and distribution of functional and phylogenetic diversity. Use of this data set for academic or educational purposes is allowed as long as the data source is properly cited. When used for academic or educational purposes, this data set should be cited using the title of this Data Paper, the names of the authors, the year of publication, and the corresponding volume and article numbers
Abundance data for invertebrate assemblages from intertidal mussel beds along the Atlantic Canadian coast
This data set describes the abundance of invertebrate taxa found in intertidal mussel beds along the Atlantic Canadian coast. The data resulted from a regional-scale study that investigated the effects of wave exposure on the richness and composition of invertebrate assemblages from intertidal mussel beds. Abundance data are provided for taxa representing the Annelida, Arthropoda, Bryozoa, Chordata, Cnidaria, Echinodermata, Mollusca, Nematoda, Nemertea, and Platyhelminthes. The data characterize mussel beds from wave-sheltered and wave-exposed locations spanning 315 km of coast. Univariate and multivariate analyses revealed that the compositional structure of these invertebrate assemblages differed markedly depending on wave exposure. Overall, this data set exhibits important properties that could make it useful to test broader ecological theory. Such properties include its taxonomic diversity, the possession of data for basal, intermediate, and top trophic levels, and the coverage of two extremes of environmental stress. Thus, areas of ecology that could experience advances using this data set are those concerning environmental stress models of community organization, abundance–occupancy relationships, species co-occurrence, species abundance distributions, dominance and rarity, spatial scales of population and community variation, and distribution of functional and phylogenetic diversity.Fil: Scrosati, Ricardo Augusto. Saint Francis Xavier University; CanadáFil: Arribas, Lorena Pilar. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Centro Nacional PatagĂłnico. Instituto de BiologĂa de Organismos Marinos; ArgentinaFil: Donnarumma, Luigia. UniversitĂ degli Studi di Napoli Parthenope. Dipartimento di Scienze e Tecnologie; Itali
Diversity Loss in Coralligenous Structuring Species Impacted by Fishing Gear and Marine Litter
Coralligenous structuring species (CSS) form a group of marine megabenthic species with an engineering capacity. Since they are highly vulnerable to anthropogenic activities, they have been selected for the Marine Strategy Framework Directive (MSFD) monitoring programs. The pressure and impact of fishing gear and marine litter on these species were evaluated through the image analysis of 54 remotely operated vehicle (ROV) routes along the Campania coasts (Tyrrhenian Sea, Italy). CSS density was calculated as the number of colonies/100 m2. Anthropogenic pressure was estimated as the frequency of frames showing longline, nets, other gear, plastic objects, metal objects, and other litter; while the impact was expressed as the frequency showing necrosis/epibiosis, broken/upturned and covered/entangled colonies. Cnidaria dominate in the Napoli, Campanella and Capri areas, while Bryozoa dominate in Cilento N and Cilento S areas. Campanella and Capri appeared to be the least heterogeneous despite their higher CSS densities, which was possibly related to the dominance of a few species. These areas were the most affected by showing the highest numbers of fishing gear (longlines) and marine litter (metal objects) recorded, amongst which longlines are the most abundant. In addition, these fishing areas are either close to a large urban center or located along popular touristic routes. In all the areas, colonies with necrosis/epibiosis (CNE) impact are present with low-moderate values, while the category gears covering/entangling (GCE) impact prevails in the Campanella and Capri areas, and this is strictly connected to the high presence of fishing gear
Assessment of Structural and Functional Diversity of Mollusc Assemblages within Vermetid Bioconstructions
Dendropoma lebeche is a prosobranch gastropod belonging to the family Vermetidae, which calcifies its shell on hard substrates in dense aggregates, forming biogenic constructions along the western Mediterranean intertidal habitat. It is an important ecosystem engineer and, due to its ecological value, is protected by international convention. The aim of this study is to investigate the mollusc composition and diversity occurring within Spanish vermetid bioconstructions. During the late summer 2013, three distant sites along the Mediterranean coast of Spain were sampled by scraping off the vermetid shells to study their associated assemblages. A total of 600 molluscs were identified within the classes of Polyplacophora (four species), Gastropoda (35 spp.) and Bivalvia (18 spp.). Multivariate analyses revealed significant differences in composition and trophic diversity of mollusc assemblages among the three sites, highlighting a clear geographical gradient. Overall, both herbivores (grazers and deposit feeders) and omnivores were the quantitatively dominant trophic groups, while carnivores (predators and ectoparasites) were very scarce. Our results point out that mollusc assemblages associated with vermetid bioconstructions are rich and diversified, both in populations structure and trophic diversity, confirming the important role of vermetid gastropods as ecosystem engineers and biodiversity enhancers in shallow coastal waters.This study was funded by the Italian Ministry for Education, Universities and Research (Z8HJ5M_008; P.R.I.N. Program 2010–2011: project “Marine bioconstructions: structure, function and management”), and by a Ph.D. fellowship of the first author L.D. (Doctorate in Marine, Terrestrial and Climate Sciences, University of Naples Parthenope)
Anti-PD1 Consolidation in Patients with Hodgkin Lymphoma at High Risk of Relapse after Autologous Stem Cell Transplantation: A Multicenter Real-Life Study
(1) Background: Consolidation therapy is an emerging strategy for patients with relapsed/refractory (RR) Hodgkin Lymphoma (HL) at high risk of failing salvage autologous stem cell transplantation (ASCT). (2) Objectives: To assess the safety and effectiveness of PD1-blockade consolidation for these high-risk patients. (3) Design: Multi-center retrospective analysis. (4) Methods: We identified 26 patients given anti-PD1 consolidation, from June 2016 to May 2020. (5) Results: Patients displayed the following risk factors: refractory disease (69%), relapse 3, occurred in 12 patients (46.15%) and mainly included skin rashes (41.7%), transaminitis (33.3%), and thyroid hypofunction (25%). Patients completed a median of 13 courses (range 6–30). At a median follow-up of 25.8 months post-ASCT, the median progression-free (PFS) was 42.6 months, with a 2-year PFS and overall survival rates of 79% and 87%, respectively. (6) Conclusions: Post-ASCT consolidation with anti-PD1 is feasible and effective. Further studies are warranted to define the optimal treatment length and patients’ subsets more likely to benefit from this approach
Abundance data for invertebrate assemblages from intertidal mussel beds along the Atlantic Canadian coast
This data set describes the abundance of 50 invertebrate taxa found in intertidal mussel beds along the Atlantic Canadian coast. This information resulted from a regionalscale study that investigated the effects of wave exposure on the richness and composition of invertebrate assemblages from intertidal mussel beds. Abundance data are provided for taxa representing the Annelida, Arthropoda, Bryozoa, Chordata, Cnidaria, Echinodermata, Mollusca, Nematoda, Nemertea, and Platyhelminthes. The data characterize mussel beds from wave-sheltered and wave-exposed locations spanning 315 km of the coast of Nova Scotia. Univariate and multivariate analyses revealed that the compositional structure of these invertebrate assemblages differed markedly depending on wave exposure. Overall, because of its taxonomic diversity, the inclusion of data for basal, intermediate, and top trophic levels, and the coverage of two extremes of environmental stress, this data set could be useful to test broader aspects of ecological theory. Areas of ecology that could advance using this data set are those concerning environmental stress models of community organization, abundance–occupancy relationships, species co-occurrence, species abundance distributions, dominance and rarity, spatial scales of population and community variation, and distribution of functional and phylogenetic diversity. Use of this data set for academic or educational purposes is allowed as long as the data source is properly cited. When used for academic or educational purposes, this data set should be cited using the title of this Data Paper, the names of the authors, the year of publication, and the corresponding volume and article numbers
Forever young... Colonization pattern of epibionts on Posidonia oceanica artificial leaves in relation to ocean acidification
Ocean acidification (OA) is today considered one of the most pervasive stressors for marine biota at the level of species, communities and ecosystems. Naturally acidified systems, such as the CO2 vents, represent suitable laboratories to study the effects of OA on benthic organisms. An analysis of the colonization pattern of epibionts settled on artificial leaves (mimics) of Posidonia oceanica in relation to ocean acidification at the shallow CO2 vents off the island of Ischia, is here presented. Mimics of Posidonia oceanica artificial leaves (dark green flexible PVC stripes 1 cm wide x 36 cm long) were placed from September 2009 to September 2010 along a gradient of OA of the Ischia vent’s system at six stations (3 on the south and 3 on the north side of the study area), located at extreme low pH (mean pH 7.5), low pH (7.8), and control, normal pH conditions (8.12). Six artificial leaves per station were collected every three months and analysed for taxa identification and estimates of coverage (algae and sessile clonal invertebrates) and number of individuals (not clonal taxa).
Patterns of colonization in control stations showed a progressive increase in time in coverage values of many organisms, mainly calcifying forms as coralline algae, which represent the dominant taxon, spirorbids and bryozoans. Colonization of artificial leaves located in low pH stations followed a similar temporal pattern as control conditions, but with lower coverage and higher patchiness of calcareous forms at 12 months of colonization. Epibionts in extreme low pH conditions were dominated by filamentous green/brown algae, with the occurrence of a few coralline algae, spirorbids and bryozoans, especially in the early months of colonization (3 and 6 months). Colonization at 9 and 12 months showed the disappearance of even these rare calcareous organisms and occurrence only of filamentous turf and fleshy algae, with a very simplified epibiont assemblage, remaining at an early, young colonization stage. These results indicate a strong selection of calcareous forms and the lack of successional stages in extreme low pH conditions, while the few calcifiers settled at short exposure time (3-6 months) do not seem to survive at longer exposure to critical values of OA
Assessing molluscs functional diversity within different coastal habitats of Mediterranean marine protected areas
Molluscs assemblages inhabiting subtidal habitats (sandy bottoms, photophilic and sciaphilic hard bottoms, Posidonia oceanica seagrass beds) represent a valuable part of coastal biodiversity and were studied in four Italian Marine Protected Areas. Quantitative samplings were carried out in late spring - summer of 2015. A total of 776 individuals were identified, belonging to the classes of Polyplacophora (5 species, 24 individuals), Gastropoda (62 sp., 240 ind.), Bivalvia (51 sp., 488 ind.), and Scaphopoda (3 sp., 24 ind.). Multivariate analyses revealed significant inter-habitat differences in the composition of mollusc assemblages, especially between soft bottom and all the other habitats. In all MPAs, the highest species richness and feeding guilds occurred in the photophilic hard bottom, where, in contrast, a lower number of individuals was found. On the contrary, in the soft bottom the highest number of individuals and the lower species richness and feeding guilds were found. Although the results pointed out some intra-habitat differences among MPAs, the molluscan assemblages showed a valuable degree of taxonomic and trophic similarity, especially in vegetated habitats. These results are of primary importance for ecosystem functioning and management as the considered habitats are the most relevant of the coastal zones
Natural capital accounting in marine protected areas: The case of the Islands of Ventotene and S. Stefano (Central Italy)
Marine ecosystems are exposed to significant anthropogenic pressure mainly due to the exploitation of biotic and abiotic marine resources. Marine protected areas (MPAs) are important tools to achieve local and global marine conservation targets. Marine ecosystems generate goods and services vital for human well-being. Their value can be explored not only from an economic viewpoint based on market and human preferences, but also using a biophysical perspective based on the accounting of environmental costs sustained for the generation of natural capital stocks and ecosystem services flows. In this study, the value of natural capital in the MPA âthe Islands of Ventotene and S. Stefanoâ (Central Italy) was assessed applying a biophysical and trophodynamic environmental accounting model based on emergy accounting. The value of natural capital was estimated for the main habitats of the investigated MPA in terms of the work done by the biosphere for its generation and maintenance. Both the autotrophic and heterotrophic natural capital of the MPA was evaluated. The highest value of emergy density of 4.26â1011 sej mâ2was shown by the habitat âPosidonia oceanica seagrass bedâ when investigating the autotrophic natural capital. The sciaphilic hard bottom habitat (coralligenous) showed the highest value of emergy density of 2.76â1012 sej mâ2when investigating the heterotrophic natural capital. The high emergy cost of coralligenous confirmed the importance of this habitat that represents one of the most important hot spot of species diversity in the Mediterranean Sea. The total emergy value of natural capital of the MPA was converted to monetary units by using the emergy-to-money ratio for Italy, resulting in 8.26 Mâ¬. Finally, a GIS tool was used to show the spatial distribution of natural capital values in relation to different habitats. The outcomes of this study highlighted the usefulness of the applied biophysical and trophodynamic environmental accounting model to explore the ecological value of natural capital in marine ecosystems while supporting local managers and policy makers for the sustainable development of MPAs