486 research outputs found
Out of breath: GM-CSFRα mutations disrupt surfactant homeostasis
Pulmonary alveolar proteinosis (PAP) is a rare disorder in which surfactant homeostasis in the lung is impaired, causing respiratory distress and, in severe cases, respiratory failure. Most cases of PAP are associated with the formation of autoantibodies against the cytokine granulocyte/macrophage colony-stimulating factor (GM-CSF), which is required for normal surfactant homeostasis and lung function. New studies now identify three patients in whom PAP was caused by mutations in the gene encoding the ligand-binding α chain of the GM-CSF receptor
Abnormalities of Thymic Stroma may Contribute to Immune Dysregulation in Murine Models of Leaky Severe Combined Immunodeficiency
Lymphostromal cross-talk in the thymus is essential to allow generation of a diversified repertoire of T lymphocytes and to prevent autoimmunity by self-reactive T cells. Hypomorphic mutations in genes that control T cell development have been associated with immunodeficiency and immune dysregulation both in humans and in mice. We have studied T cell development and thymic stroma architecture and maturation in two mouse models of leaky severe combined immune deficiency, carrying hypomorphic mutations in rag1 and lig4 genes. Defective T cell development was associated with abnormalities of thymic architecture that predominantly affect the thymic medulla, with reduction of the pool of mature medullary thymic epithelial cells (mTECs). While the ability of mTECs to express autoimmune regulator (Aire) is preserved in mutant mice, the frequency of mature mTECs expressing Aire and tissue-specific antigens is severely reduced. Similarly, the ability of CD4+ T cells to differentiate into Foxp3+ natural regulatory T cells is preserved in rag1 and lig4 mutant mice, but their number is greatly reduced. These data indicate that hypomorphic defects in T cell development may cause defective lymphostromal cross-talk and impinge on thymic stromal cells maturation, and thus favor immune dysregulation
Inherited DOCK2 Deficiency in Patients with Early-Onset Invasive Infections
Background Combined immunodeficiencies are marked by inborn errors of T-cell immunity in which the T cells that are present are quantitatively or functionally deficient. Impaired humoral immunity is also common. Patients have severe infections, autoimmunity, or both. The specific molecular, cellular, and clinical features of many types of combined immunodeficiencies remain unknown. Methods We performed genetic and cellular immunologic studies involving five unrelated children with early-onset invasive bacterial and viral infections, lymphopenia, and defective T-cell, B-cell, and natural killer (NK)-cell responses. Two patients died early in childhood; after allogeneic hematopoietic stem-cell transplantation, the other three had normalization of T-cell function and clinical improvement. Results We identified biallelic mutations in the dedicator of cytokinesis 2 gene (DOCK2) in these five patients. RAC1 activation was impaired in the T cells. Chemokine-induced migration and actin polymerization were defective in the T cells, B cells, and NK cells. NK-cell degranulation was also affected. Interferon-alpha and interferon-lambda production by peripheral-blood mononuclear cells was diminished after viral infection. Moreover, in DOCK2-deficient fibroblasts, viral replication was increased and virus-induced cell death was enhanced; these conditions were normalized by treatment with interferon alfa-2b or after expression of wild-type DOCK2. Conclusions Autosomal recessive DOCK2 deficiency is a new mendelian disorder with pleiotropic defects of hematopoietic and nonhematopoietic immunity. Children with clinical features of combined immunodeficiencies, especially with early-onset, invasive infections, may have this condition. (Supported by the National Institutes of Health and others.)
Rag defects and thymic stroma: lessons from animal models
Thymocytes and thymic epithelial cells (TECs) cross-talk is essential to support T cell development and preserve thymic architecture and maturation of TECs and Foxp3+ natural regulatory T cells. Accordingly, disruption of thymic lymphostromal cross-talk may have major implications on the thymic mechanisms that govern T cell tolerance. Several genetic defects have been described in humans that affect early stages of T cell development [leading to severe combined immune deficiency (SCID)] or late stages in thymocyte maturation (resulting in combined immunodeficiency). Hypomorphic mutations in SCID-causing genes may allow for generation of a limited pool of T lymphocytes with a restricted repertoire. These conditions are often associated with infiltration of peripheral tissues by activated T cells and immune dysregulation, as best exemplified by Omenn syndrome (OS). In this review, we will discuss our recent findings on abnormalities of thymic microenvironment in OS with a special focus of defective maturation of TECs, altered distribution of thymic dendritic cells and impairment of deletional and non-deletional mechanisms of central tolerance. Here, taking advantage of mouse models of OS and atypical SCID, we will discuss how modifications in stromal compartment impact and shape lymphocyte differentiation, and vice versa how inefficient T cell signaling results in defective stromal maturation. These findings are instrumental to understand the extent to which novel therapeutic strategies should act on thymic stroma to achieve full immune reconstitution
Functional characterization of natural killer cells in type I leukocyte adhesion deficiency
Abstract
In this study, we analyzed IL-2–activated polyclonal natural killer (NK) cells derived from 2 patients affected by leukocyte adhesion deficiency type I (LAD1), an immunodeficiency characterized by mutations of the gene coding for CD18, the β subunit shared by major leukocyte integrins. We show that LAD1 NK cells express normal levels of various triggering NK receptors (and coreceptors) and that mAb-mediated engagement of these receptors results in the enhancement of both NK cytolytic activity and cytokine production. Moreover, these activating NK receptors were capable of recognizing their specific ligands on target cells. Thus, LAD1 NK cells, similarly to normal NK cells, were capable of killing most human tumor cells analyzed and produced high amounts of IFN-γ when cocultured in presence of target cells. Murine target cells represented a common exception, as they were poorly susceptible to LAD1 NK cells. Finally, LAD1 NK cells could efficiently kill or induce maturation of monocyte-derived immature dendritic cells (DCs). Altogether our present study indicates that in LAD1 patients, 3 important functions of NK cells (eg, cytotoxicity, IFN-γ production, and DC editing) are only marginally affected and provides new insight on the cooperation between activating receptors and LFA-1 in the induction of NK cell activation and function
Editorial: NK Cell Subsets in Health and Disease: New Developments
Natural killer (NK) cells were discovered ca 1975, as the first group of lymphoid cells that were neither T cells nor B cells. Since then, the dissection of the biology of NK cells has been growing exponentially with many seminal discoveries from the identification of MHC class I-specific inhibitory receptors to the discovery of receptor\u2013ligand pairs involved in NK cell activation and to the manipulation of NK cells in cancer.
In this research topic, we asked a group of thought leaders in NK cell biology to review recent advances in their origins and biology, and their roles in cancer, infection, and inflammation.
Together, these 25 articles provide a timely survey of NK cells as critical immunologic components of health and disease. They will hopefully prompt further dialog and developments in basic and translational immunology
Case Report: Severe Rhabdomyolysis and Multiorgan Failure After ChAdOx1 nCoV-19 Vaccination
Background: Severe skeletal muscle damage has been recently reported in patients with
SARS-CoV-2 infection and as a rare vaccination complication.
Case summary: On Apr 28, 2021 a 68-year-old man who was previously healthy
presented with an extremely severe rhabdomyolysis that occurred nine days following the
first dose of SARS-CoV-2 ChAdOx1 nCov-19 vaccination. He had no risk factors, and
denied any further assumption of drugs except for fermented red rice, and berberine
supplement. The clinical scenario was complicated by a multi organ failure involving bone
marrow, liver, lung, and kidney. For the rapid increase of the inflammatory markers, a
cytokine storm was suspected and multi-target biologic immunosuppressive therapy was
started, consisting of steroids, anakinra, and eculizumab, which was initially successful
resulting in close to normal values of creatine phosphokinase after 17 days of treatment.
Unfortunately, 48 days after the vaccination an accelerated phase of deterioration,
characterized by severe multi-lineage cytopenia, untreatable hypotensive shock,
hypoglycemia, and dramatic increase of procalcitonin (PCT), led to patient death.
Conclusion: Physicians should be aware that severe and fatal rhabdomyolysis may occur
after SARS-CoV2 vaccine administration
Defective Th1 Cytokine Gene Transcription in CD4+ and CD8+ T Cells from Wiskott-Aldrich Syndrome Patients
Abstract
Wiskott-Aldrich syndrome (WAS) protein (WASP) plays a key role in TCR-mediated activation and immunological synapse formation. However, the effects of WASP deficiency on effector functions of human CD4+ and CD8+ T cells remain to be determined. In this study, we report that TCR/CD28-driven proliferation and secretion of IL-2, IFN-γ, and TNF-α are strongly reduced in CD8+ T cells from WAS patients, compared with healthy donor CD8+ T cells. Furthermore, WAS CD4+ T cells secrete low levels of IL-2 and fail to produce IFN-γ and TNF-α, while the production of IL-4, IL-5, and IL-10 is only minimally affected. Defective IL-2 and IFN-γ production persists after culture of naive WAS CD4+ T cells in Th1-polarizing conditions. The defect in Th1 cytokine production by WAS CD4+ and CD8+ T cells is also present at the transcriptional level, as shown by reduced IL-2 and IFN-γ mRNA transcripts after TCR/CD28 triggering. The reduced transcription of Th1 cytokine genes in WAS CD4+ T cells is associated with a defective induction of T-bet mRNA and a reduction in the early nuclear recruitment of NFAT-1, while the defective activation of WAS CD8+ T cells correlates with reduced nuclear recruitment of both NFAT-1 and NFAT-2. Together, our data indicate that WASP regulates the transcriptional activation of T cells and is required specifically for Th1 cytokine production
Successful Pregnancies, Births, and Children Development Following Oocyte Cryostorage in Female Cancer Patients During 25 Years of Fertility Preservation
Simple Summary The study goal is to demonstrate that oocyte cryopreservation is a feasible and efficient option for fertility preservation in cancer patients through the comparison of in vitro fertilization treatments in nononcological patients. The preservation of fertility in cancer patients is a crucial aspect of modern reproductive medicine. Amenorrhea and infertility often occur after cancer therapy, worsening the quality of life. Cryopreservation of oocytes in young cancer patients is a therapeutic option for preserving fertility. A prospective study was conducted on 508 cancer patients who underwent oocyte cryopreservation to preserve fertility between 1996 and 2021 including the COVID-19 pandemic period. Patients underwent ovarian stimulation, followed by egg retrieval, and oocytes were cryopreserved by slow freezing or vitrification. Sixty-four thawing/warming cycles were performed. Survival, fertilization, pregnancy, and birth rate over the thawing/warming cycles were obtained. The data were compared with those from a group of 1042 nononcological patients who cryopreserved supernumerary oocytes. An average of 8.8 +/- 6.9 oocytes were retrieved per cycle, and 6.1 +/- 4.2 oocytes were cryopreserved. With their own stored oocytes, 44 patients returned to attempt pregnancy. From a total of 194 thawed/warmed oocytes, 157 survived (80%). In total, 100 embryos were transferred in 57 transfer/cycles, and 18 pregnancies were achieved. The pregnancy rate per transfer and pregnancy rate per patient were 31% and 41%, respectively. No statistically significant differences were observed between oncological patients and nononcological patients. A total of 15 babies were born from oncological patients. Children born showed normal growth and development. One minor malformation was detected
- …