15 research outputs found

    Diabetes mellitus and its chronic complications in Singapore: an increasing healthcare problem.

    No full text
    Annals of the Academy of Medicine Singapore194517-52

    Structural and magnetic properties of holmium-scandium alloys and superlattices

    Get PDF
    The properties of Ho-Sc alloys and superlattices grown by molecular-beam epitaxy have been investigated using x-ray and neutron-diffraction techniques. Structural studies reveal that the alloy samples have different a lattice parameters for the Sc-seed layer and the Ho:Sc alloy grown on top of the seed layer; while the superlattices have different a lattice parameters for the Sc seed, and for both the Ho and Sc in the superlattice layers. The structural characteristics are related to the large lattice mismatches (of the order 7%) between the constituent elements. The magnetic moments in the alloys form a basal-plane helix at all temperatures, with distortions of the helical arrangement for samples with the highest Ho concentrations. The dependences of the Neel temperature, T-N and the helical wave vector upon both temperature and concentration are compared with those of other alloy systems. It is found that a good description of the dependence of T-N upon concentration is given by a virtual-crystal model where the peak in the conduction-electron susceptibility varies linearly between that of the pure constituents. In the superlattices, the moments also form a basal-plane helix at T-N. In this helical phase, some samples exhibit a short-range coherence of an antiferromagnetic coupling between adjacent Ho blocks. For one superlattice, there is a low-temperature transition to a ferromagnetic phase, in which moments are ferromagnetically aligned within Ho blocks, and coupled antiferromagnetically between adjacent Ho blocks. The contrast with systems which have Y or Lu as the nonmagnetic element is discussed in terms of the structural properties of the samples, band-structure calculations, and the possible influence of dipolar forces

    Coherent magnetic structures in terbium/holmium superlattices

    Get PDF
    Neutron-scattering techniques have been used to investigate the magnetic properties of three Tb/Ho superlattices grown by molecular-beam epitaxy. It is revealed that for temperatures in the range T = 10 to T-N(Ho)approximate to 130 K, there is a basal-plane ferromagnetic alignment of Tb moments within To blocks that is coherent with a basal-plane helical ordering of Ho moments. Between T approximate to T-N(Ho) and 200 K, the Tb moments remain ferromagnetically aligned within To blocks, with adjacent To blocks antiferromagnetically coupled. As the temperature is raised from T approximate to 200 to 230 K, two samples retain this magnetic structure while the third undergoes a transition first to a mixed phase of helically and ferromagnetically ordered Tb moments, then to a phase with only helically ordered To moments. Ln all cases, the magnetic ordering is found to be long ranged, with coherence lengths extending over three to six bilayers. The results are discussed with a consideration of previous rare-earth superlattice studies, and the possible mechanisms for interlayer coupling

    COVID-19 in Adults With Congenital Heart Disease.

    No full text
    Adults with congenital heart disease (CHD) have been considered potentially high risk for novel coronavirus disease-19 (COVID-19) mortality or other complications. This study sought to define the impact of COVID-19 in adults with CHD and to identify risk factors associated with adverse outcomes. Adults (age 18 years or older) with CHD and with confirmed or clinically suspected COVID-19 were included from CHD centers worldwide. Data collection included anatomic diagnosis and subsequent interventions, comorbidities, medications, echocardiographic findings, presenting symptoms, course of illness, and outcomes. Predictors of death or severe infection were determined. From 58 adult CHD centers, the study included 1,044 infected patients (age: 35.1 ± 13.0 years; range 18 to 86 years; 51% women), 87% of whom had laboratory-confirmed coronavirus infection. The cohort included 118 (11%) patients with single ventricle and/or Fontan physiology, 87 (8%) patients with cyanosis, and 73 (7%) patients with pulmonary hypertension. There were 24 COVID-related deaths (case/fatality: 2.3%; 95% confidence interval: 1.4% to 3.2%). Factors associated with death included male sex, diabetes, cyanosis, pulmonary hypertension, renal insufficiency, and previous hospital admission for heart failure. Worse physiological stage was associated with mortality (p = 0.001), whereas anatomic complexity or defect group were not. COVID-19 mortality in adults with CHD is commensurate with the general population. The most vulnerable patients are those with worse physiological stage, such as cyanosis and pulmonary hypertension, whereas anatomic complexity does not appear to predict infection severity
    corecore